精英家教网 > 初中数学 > 题目详情

【题目】我们知道,解一元一次方程,可以把它转化为两个一元一次方程来解,其实用“转化”的数学思想,我们还可以解一些新的方程,例如一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.

(1)方程x3+x2﹣2x=0的解是x1=0,x2=   ,x3=   

(2)用“转化”思想求方程=x的解.

(3)如图,已知矩形草坪ABCD的长AD=14m,宽AB=12m,小华把一根长为28m的绳子的一端固定在点B处,沿草坪边沿BA、AD走到点P处,把长绳PB段拉直并固定在点P处,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C处,求AP的长.

【答案】(1)1、﹣2;(2)x1=﹣1、x2=3;(3)AP的长为5m或9m.

【解析】

(1)先提取公因式x,再因式分解可得x(x﹣1)(x+2)=0,据此解之可得;

(2)两边平方后整理可得x2﹣2x﹣3=0,解之可得;

(3)设AP=x,则DP=14﹣x,根据勾股定理可得PB=、PC=,由PB+PC=28+=28,移项、平方求解可得.

(1)x3+x2﹣2x=0,

x(x2+x﹣2)=0,

x(x﹣1)(x+2)=0,

x=0x﹣1=0x+2=0,

解得:x1=0、x2=1、x3=﹣2.

故答案为:1、﹣2.

(2)=x,

2x+3=x2,即x2﹣2x﹣3=0,

(x+1)(x﹣3)=0,

x+1=0x﹣3=0,

解得:x1=﹣1、x2=3;

(3)设AP=x,则DP=14﹣x,

AB=CD=12,A=D=90°,

PB==、PC==

PB+PC=28,

+=28,

=28﹣

两边平方,整理可得:

再两边平方,整理可得:x2﹣14x+45=0,

解得x1=5、x2=9,

AP的长为5m9m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,B. F. C.E在一条直线上(F,C之间不能直接测量),A,D在直线l的异侧,测得AB=DE,ABDE,ACDF.

(1)求证:ABC≌△DEF

(2)BE=13mBF=4m,求FC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MNAMMNMBNMNN
1)求证:MN=AM+BN
2)若过点C在△ABC内作直线MNAMMNMBNMNN,则AMBNMN之间有什么关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形中,,线段上有动点,过作直线边于点,并使得

重合时,求的长;

在直线上是否存在一点,使得是等腰直角三角形?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH3.4m.当起重臂AC长度为9m,张角∠HAC118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=5,AC=13,BC边上的中线AD=6,则ABD的面积是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,锐角中,,若想找一点P,使得互补,甲、乙、丙三人作法分别如下:

甲:以B为圆心,AB长为半径画弧交ACP点,则P即为所求;

乙:分别以BC为圆心,ABAC长为半径画弧交于P点,则P即为所求;

丙:作BC的垂直平分线和的平分线,两线交于P点,则P即为所求.

对于甲、乙、丙三人的作法,下列叙述正确的是  

A. 三人皆正确B. 甲、丙正确,乙错误

C. 甲正确,乙、丙错误D. 甲错误,乙、丙正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形的边长为厘米,对角线上的两个动点.点从点,点从点同时出发,沿对角线以厘米/秒的相同速度运动,过的直角边于,过的直角边于,连接.设围成的图形面积为围成的图形面积为这里规定:线段的面积为到达到达停止.若的运动时间为秒,解答下列问题:

如图,判断四边形是什么四边形,并证明;

时,求为何值时,

的和,试用的代数式表示.(如图为备用图)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=AC=8,BAC=90,直线l与以AB为直径的⊙O相切于点B,点D是直线l上任意一动点,连结DA交⊙OE.

(1)当点DAB上方且BD=6时,求AE的长;

(2)当CE恰好与⊙O相切时,求BD的长为多少?

查看答案和解析>>

同步练习册答案