精英家教网 > 初中数学 > 题目详情
13.已知,如图所示,在?ABCD中,∠BAD的平分线与BC交于E,∠ABC的平分线交AD于点F,AE,BF交于O,则四边形ABEF为菱形,请说明理由.

分析 先证明四边形ABEF是平行四边形,再证明邻边相等即可得出结论.

解答 证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵∠BAD的平分线交BC于点E,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE,
同理:AB=AF,
∴AF=BE,
∵AF∥BE,
∴四边形ABEF是平行四边形,
∵AB=AF
∴四边形ABEF是菱形.

点评 本题考查平行四边形的性质、菱形的判定;熟练掌握平行四边形的性质,证明AB=BE=AF是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.如图,在点O处测得远处动点P作匀速直线运动,开始位置在A点,一分钟后到达B点,再过一分钟到达C点,测得∠AOB=90°,∠BOC=30°,则tan∠OAB=(  )
A.$\frac{3}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)如图,△OAB是抛物线y=-x2+bx(b>0)的“抛物线三角形”,当OA=OB时,求b的值;
(2)若抛物线y=a(x-2)2+b(a>0,b<0)的“抛物线三角形”是直角三角形,求a,b满足的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,等边△ABC中,D是BC中点,过点D作DF⊥AC于点F,P在AB上,连DP,以DP为斜边作Rt△DPE,且∠EDP=∠B,连接EF.

(1)求证:AP=2EF;
(2)连接AE并延长交BC于点K,交DF于点H,若BP=8,PE:EF=$\sqrt{19}$:2时,求DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.一铁路路基横断面为等腰梯形ABCD,斜坡BC的坡度为i=2:3,路基高AE为3米,底CD宽12米,求路基顶AB的宽.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:$\frac{2}{b}$$\sqrt{a{b}^{5}}$•(-$\frac{3}{2}$$\sqrt{{a}^{3}b}$)÷3$\sqrt{\frac{b}{a}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,AD与BC交于点E,∠BAC=∠ACD=90°,∠B=45°,∠D=30°,则$\frac{BE}{EC}$的值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.点D、E、F分别在△ABC的三边BC、AB、AC上,且AD、BF、CE相交于一点M,若$\frac{AB}{BE}+\frac{AC}{CF}=5$,则$\frac{AM}{MD}$=(  )
A.$\frac{7}{2}$B.3C.$\frac{5}{2}$D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知二次函数y=ax2+2ax+c(a>0)的图象交x轴于A、B两点,交y轴于点C.过点B的直线l与这个二次函数的图象的另一个交点为D,与该图象的对称轴交于点E,与y轴交于点F,且DE:EF:FB=1:1:2.
(1)求证:点F为OC的中点;
(2)连接OE,若△OBE的面积为2,求这个二次函数的关系式;
(3)设这个二次函数的图象的顶点为P,问:以DF为直径的圆是否可能恰好经过点P?若可能,请求出此时二次函数的关系式;若不可能,请说明理由.

查看答案和解析>>

同步练习册答案