精英家教网 > 初中数学 > 题目详情
已知:如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.
(1)求∠NMB的度数;
(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;
(3)通过对(1)中和(2)中结果的分析,猜想∠NMB的度数与∠A的度数有怎样的等量关系?并证明你的结论;
(4)若将(1)中的∠A改为钝角,在(3)中你猜想的结论是否仍然成立?
考点:线段垂直平分线的性质,等腰三角形的性质
专题:
分析:(1)先根据等腰三角形的性质得出∠B的度数,再由直角三角形的性质即可得出结论;
(2)解法同(1);
(3)设∠A=α,根据AB=AC可知∠B=∠C,再由直角三角形的性质即可得出结论;
(4)证明过程与(3)相同.
解答:(1)∵AB=AC,
∴∠B=∠ACB,
∴∠B=
1
2
(180°-∠A)=
1
2
(180°-40°)=70°,
∴∠NMB=90°-∠B=90°-70°=20°;

(2)解法同(1),可得∠NMB=35°;

(3)两者关系为:∠NMB的度数等于顶角∠A度数的一半,
证明:设∠A=α,
∵AB=AC,
∴∠B=∠C,
∴∠B=
1
2
(180°-∠A)=
1
2
(180°-α),
∵∠BNM=90°,
∴∠NMB=90°-∠B=90°-
1
2
(180°-α)=
1
2
α;

(4)将(1)中的∠A改为钝角,(3)中猜想的结论结论仍然成立.
点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,平面直角坐标系中有一直角梯形OABC,点C的坐标为(8,0),点B的坐标为(6,4).
(1)求出过A,B,C三点的抛物线的表达式;
(2)点P从C点出发以每秒1个单位的速度沿线段CO向O点运动,同时点Q从A点出发以相同的速度沿线段AB向B点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.当t为何值时,四边形BCPQ为平行四边形;
(3)若点M为直线AC上方的抛物线上一动点,当点M运动到什么位置时,△AMC的面积最大?求出此时M点的坐标和△AMC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以△ABC的边AB和AC为腰,分别向△ABC外作等腰Rt△ABD和等腰Rt△ACE,其中∠DAB=∠EAC=90°,连接BE、CD交于点M.求证:BE=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(-3)-2+3tan30°-(1-
2
)
0
+
12

查看答案和解析>>

科目:初中数学 来源: 题型:

x2-(x+2)(x-2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【阅读】
定义:以线段l的一个端点为旋转中心,将这条线段顺时针旋转α(0°<α≤360°),再沿水平向右的方向平移m个单位后得到线段l′(若m<0,则表示沿水平向左的方向平移|m|个单位),称线段l到线段l′的变换为XP<α,m>.图1中的变换XP<30°,3>就表示线段AB绕点A顺时针旋转30°,再沿水平向右的方向平移3个单位后得到线段A′B′的过程.


【操作】
图2是边长为1的正方形网格,线段AB的端点在格点上,以A为旋转中心,在图中画出线段AB经过变换XP<90°,-2>后的对应线段A′B′.
【应用1】
若将与水平方向垂直的线段AB经变换XP<60°,m>后所得的图形是线段CD(如图3),其中点A为旋转中心,AB=4,∠C=45°,求m的值.
【应用2】
如图4,在平面直角坐标系xOy中,其中x轴的正方向为水平向右.若抛物线y=
1
2
x2-2x
交x轴的正半轴于A,以O为旋转中心,线段OA经过XP<α,m>变换后对应线段的一个端点正好落在抛物线的顶点处,其中请直接写出所有符合题意的α和m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,O是坐标原点,长方形ABCD的顶点C(3,
3
),顶点A在x轴的负半轴上,顶点B在x轴上.点E是CD上一动点,将梯形OBCE沿OE翻折至OB′C′E,OB′交CD于H,过点O作OE的垂线交CD所在直线于点G,设E(t,
3
).

(1)直接写出OB′的长;
(2)①当HB′=1时,求出对应H点的坐标;②求证:HG=HO.
(3)如图2,作直线B′C′交直线OG于F.在运动变化过程中,点F的横坐标会随着t的变化而变化吗?如果变化,请用含t的式子表示;如果不变,求出点F的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

在弹性限度内,弹簧伸长的长度与所挂物体的质量成正比.某弹簧不挂物体时长12cm;当所挂物体质量为3kg时,弹簧长13.8cm.
(1)写出弹簧长度y(cm)与所挂物体质量x(kg)之间的函数表达式;
(2)求当所挂物体质量为10kg时弹簧的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:-22+
4
+(3-π)0-|-3|=
 

查看答案和解析>>

同步练习册答案