如图:抛物线
与
轴交于A、B两点,点A的坐标是(1,0),与
轴交于点C.
(1)求抛物线的对称轴和点B的坐标;
(2)过点C作CP⊥对称轴于点P,连接BC交对称轴于点D,连接AC、BP,且∠BPD=∠BCP,求抛物线的解析式。
解:
解:(1)对称轴是
,
∵点A(1,0)且点A、B关于x=2对称,
∴点B(3,0);
(2)点A(1,0),B(3,0),
∴AB=2,
∵CP⊥对称轴于P,
∴CP
∥AB,
∵对称轴是x=2,
∴AB∥CP且AB=CP,
∴四边形ABPC是平行四边形,
设点C(0,x)(x<0),
在Rt△AOC中,AC=
,
∴BP=
,
在Rt△BOC中,BC=
,
∵
,
∴BD= ![]()
,
∵∠BPD=∠PCB 且∠PBD=∠CBP,
∴△BPD∽△BCP,
∴BP2=B
D•BC,
即
=![]()
![]()
![]()
![]()
∴
,
∵点C在y轴的负半轴上,
∴点C(0,
),
∴y=ax2-4ax- 3,
∵过点(1,0),
∴a-4a- 3=0,
解得:a=
.
∴解析式是:![]()
科目:初中数学 来源: 题型:
如图,抛物线与
轴交于
(
,0)、
(
,0)两点,且
,与
轴交于点
,其中
是方程
的两个根。(14分)
(1)求抛物线的解析式;
(2)点
是线段
上的一个动点,过点
作
∥
,交
于点
,连接
,当
的面积最大时,求点
的坐标;
(3)点
在(1)中抛物线上,
点
为抛物线上一动点,在
轴上是
否存在点
,使以
为顶
点的四边形是平行四边形,如果存在,
求出所有满足条件的点
的坐标,
若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,抛物线
与
轴交于
两点,与
轴相交于点
.连结AC、BC,B、C两点的坐标分别为B(1,0)、
,且当x=-10和x=8时函数的值
相等.
![]()
1.求a、b、c的值;
2.若点
同时从
点出发,均以每秒1个单位长度的速度分别沿
边运动,其中一个点到达终点时,另一点也随之停止运动.连结
,将
沿
翻折,当运动时间为几秒时,
点恰好落在
边上的
处?并求点
的坐标及四边形
的面积;
3.上下平移该抛物线得到新的抛物线,设新抛物线的顶点为D,对称轴与x轴的交点为E,若△ODE与△OBC相似,求新抛物线的解析式。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,抛物线
与
轴交于A、B两点,与
轴交于C点,四边形OBHC为矩形,CH的延长
线交抛物线于点D(5,2),连结BC、AD.
(1)求C点的坐标及抛物线的解析式;
(2)将△BCH绕点B按顺时针旋转90º后再沿
轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;
(3)设过点E的直线交AB边于点P,交CD边于点Q. 问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源:2013届四川省盐边县红格中学九年级下学期摸底考试数学试卷(带解析) 题型:解答题
如图,抛物线
与
轴交于
两点,与
轴交于
点.![]()
(1)请求出抛物线顶点
的坐标(用含
的代数式表示),
两点的坐标;
(2)经探究可知,
与
的面积比不变,试求出这个比值;
(3)是否存在使
为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源:2012届仙师中学九年级第一次月考试考试数学卷 题型:选择题
如图,抛物线与
轴交于
(
,0)、
(
,0)两点,且
,与
轴交于点
,其中
是方程
的两个根。(14分)
(1)求抛物线的解析式;
(2)点
是线段
上的一个动点,过点
作
∥
,交
于点
,连接
,当
的面积最大时,求点
的坐标;
(3)点
在(1)中抛物线上,
点
为抛物线上一动点,在
轴上是
否存在点
,使以
为顶
点的四边形是平行四边形,如果存在,
求出所有满足条件的点
的坐标,
若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com