精英家教网 > 初中数学 > 题目详情
出租车的基价里程为3千米,起步价为6元,即行驶3千米以内为6元,超过3千米的部分,以1.40元/千米开始计价,设行驶x千米的价格为y元.
(1)试求x与y的关系式.
(2)若行驶路程为2千米,则租车价格为多少元?
(3)若行驶路程为5千米,则租车价格为多少元?
考点:一次函数的应用
专题:
分析:(1)根据分段函数当0≤x≤3和x>3时,由路程与单价之间的数量关系就可以得出解析式;
(2)由2<3代入(1)的解析式就可以求出结论;
(3)由5>3代入(1)的解析式就可以求出结论.
解答:解:(1)由题意,得
当0≤x≤3时,
y=6.
当x>3时
y=6+1.4(x-3)=1.4x+1.8.
∴y=
6(0≤x≤3)
1.4x+1.8(x>3)

(2)当x=2时.
∵2<3,
∴y=6.
答:行驶路程为2千米,则租车价格为6元;
(3)当x=5时.
∵5>3,
∴y=1.4×5+1.8=8.8元.
答:行驶路程为5千米,则租车价格为8.8元.
点评:本题考查了分段函数的运用,总价=单价×路程之间的关系的运用,根据自变量值求函数值的运用,解答时求出解析式是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

下列式子正确的是(  )
A、±
49
=7
B、
3-7
=-
37
C、
25
=±5
D、
(-3)2
=-3

查看答案和解析>>

科目:初中数学 来源: 题型:

函数y=y1+y2,且y1=2x+m,y2=
x
m-1
+3,这两个函数图象交点的纵坐标为4.
①求y关于x的函数解析式;
②若函数y=y1+y2图象交两坐标轴于A、B两点,将此直线沿点A(x轴上)顺时针旋转90°后,交y轴于点C,求直线AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

解不等式或不等式组,并把解集在数轴上表示出来
(1)
x-3
2
-
4x-1
4
≤1;
(2)
5x-2<3x+4
x+8
3
>-x

查看答案和解析>>

科目:初中数学 来源: 题型:

一个角的两边分别平行于另一个角的两边,这两个角一定相等吗?试画出图形并说明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

抛物线y=ax2+bx+c的开口向下,和x轴交于A,B两点,并且对称轴为x=-1.菱形ACBD中的点C是抛物线的顶点,若菱形的对角线分别是AB=6和CD=8.求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,△ABC,△AED都是等腰直角三角形,∠ABC=∠E=90°,AE=a,AB=b,且(a<b),点D在AC上,连接BD,BD=c.
(1)如果c=
5
2
a,①求
a
b
的值;
②若a,b是关于x的方程x2-mx+
1
25
m2-
2
5
m+
3
5
=0的两根,求m;
(2)如图2,将△ADE绕点A逆时针旋转,使BE=100,连接DC,求五边形ABCDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的不等式(2a-b)x+a-5b>0的解集为x<
10
7
,求关于的不等式ax>b的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD为正方形,AC为对角线,四边形AEFC是菱形,求证:∠EAC=30°.

查看答案和解析>>

同步练习册答案