精英家教网 > 初中数学 > 题目详情

【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?.意思是:今有甲种袋子中装有黄金9枚(每枚黄金重量相同),乙种袋子中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲种袋子比乙种袋子轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,则可建立方程为(  )

A.B.

C.D.

【答案】C

【解析】

设每枚黄金重x两,每枚白银重y两,根据黄金9枚和白银11枚的重量相等,黄金8枚和白银1枚的重量比黄金1枚白银10枚轻13,即可得出关于xy的二元一次方程,此题得解.

解:设每枚黄金重x两,每枚白银重y两,

依题意,得:

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,的中点.点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动.它们运动的时间为.设点的运动速度为,若使得,则的值为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】英国《?》杂志最近对30部手机进行了检测,结果发现有近四分之一的手机携带的细菌数量达到可接受数量的10倍,其中一部最脏的手机一度让它的主人出现严重消化不良.在手机上发现的有害细菌中,最为常见的有害细菌当属金黄色葡萄球菌.这种细菌可导致一系列感染,金黄色葡萄球菌为球形,直径左右,00000008米这个数用科学记数法表示为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请认真阅读下面的数学小探究系列,完成所提出的问题:

(1)探究1,如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,过点D做BC边上的高DE,则DE与BC的数量关系是   ,△BCD的面积为   

(2)探究2,如图②,在一般的Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,请用含a的式子表示△BCD的面积,并说明理由;

(3)探究3:如图③,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,试探究用含a的式子表示△BCD的面积,要有探究过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AM=CM,MP⊥AB于点P.求证:BP2=AP2+BC2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y1=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(4,0).

(1)求抛物线y1的函数解析式;
(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2 , 抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;
(3)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且SP:SDFH=2π,求满足条件的所有点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,点C是 的中点,点D是 的中点,连接AC,BD交于点E,则 =( )

A.
B.
C.1﹣
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:

请你根据图中的信息,解答下列问题:

)写出扇形图中__________,并补全条形图.

)在这次抽测中,测试成绩的众数和中位数分别是__________、__________

)该区体育中考选报引体向上的男生共有人,如果体育中考引体向上达个以上(含个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题探究
(1)请在图①的正方形ABCD的对角线BD上作一点P,使PA+PC最小;

(2)如图②,点P为矩形ABCD的对角线BD上一动点,AB=2,BC=2 ,点E为BC边的中点,求作一点P,使PE+PC最小,并求这个最小值.

(3)如图③,李师傅有一块边长为1000米的菱形ABCD采摘园,AC=1200米,BD为小路,BC的中点E为一水池,李师傅现在准备在小路BD上建一个游客临时休息纳凉室P,为了节省土地,使休息纳凉室P到水池E与大门C的距离之和最短,那么是否存在符合条件的点P?若存在,请作出的点P位置,并求出这个最短距离;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案