精英家教网 > 初中数学 > 题目详情

【题目】如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y= 的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是( )

A.
B.
C.
D.

【答案】B
【解析】∵矩形OABC,

∴CB∥x轴,AB∥y轴,

∵点B坐标为(6,4),

∴D的横坐标为6,E的纵坐标为4,

∵D,E在反比例函数y= 的图象上,

∴D(6,1),E( ,4),

∴BE=6﹣ = ,BD=4﹣1=3,

∴ED= =

连接BB′,交ED于F,过B′作B′G⊥BC于G,

∵B,B′关于ED对称,

∴BF=B′F,BB′⊥ED,

∴BFED=BEBD,

BF=3×

∴BF=

∴BB′=

设EG=x,则BG= ﹣x,

∵BB′2﹣BG2=B′G2=EB′2﹣GE2

∴( 2﹣( ﹣x)2=( 2﹣x2

∴x=

∴EG=

∴CG=

∴B′G=

∴B′( ,﹣ ),

∴k=﹣

所以答案是:B.

【考点精析】本题主要考查了翻折变换(折叠问题)的相关知识点,需要掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.

(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘船由A港沿北偏东60°方向航行10kmB港,然后再沿北偏西30°方向航行10kmC港.

1)求AC两港之间的距离(结果保留到0.1km,参考数据:≈1.414≈1.732);

2)确定C港在A港的什么方向.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=ax+b与反比例函数y= ,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校组织教师为地震救灾捐款,分6个工会小组进行统计,其中第6工会小组尚未统计在内,如图:

1)求前5个工会小组捐款金额的众数、中位数和平均数;

2)若全部6个小组的捐款平均数为2750元,求第6小组的捐款金额,并补全统计图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y= (x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE= ,则BN的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:
①抛物线过原点;
②4a+b+c=0;
③a﹣b+c<0;
④抛物线的顶点坐标为(2,b);
⑤当x<2时,y随x增大而增大.
其中结论正确的是( )

A.①②③
B.③④⑤
C.①②④
D.①④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将DCE沿DE对折至DFE,延长EF交边AB于点G,连接DGBF,给出以下结论:①△DAG≌△DFG;②BG=2AG;③SDGF=120;④SBEF=.其中所有正确结论的个数是(  )

A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案