精英家教网 > 初中数学 > 题目详情

【题目】如图 1,二次函数的图像过点 A (3,0),B (0,4)两点,动点 P A 出发,在线段 AB 上沿 A B 的方向以每秒 2 个单位长度的速度运动,过点P PDy 于点 D ,交抛物线于点 C 设运动时间为 t (秒).

1)求二次函数的表达式;

(2)连接 BC ,当t时,求BCP的面积;

(3)如图 2,动点 P A 出发时,动点 Q 同时从 O 出发,在线段 OA 上沿 OA 的方向以 1个单位长度的速度运动,当点 P B 重合时,P Q 两点同时停止运动,连接 DQ PQ ,将DPQ沿直线 PC 折叠到 DPE 在运动过程中,设 DPE OAB重合部分的面积为 S ,直接写出 S t 的函数关系式及 t 的取值范围.

【答案】(1);(2)4;(3)

【解析】

试题分析:(1)直接将A、B两点的坐标代入列方程组解出即可;

(2)如图1,要想求△BCP的面积,必须求对应的底和高,即PC和BD;先求OD,再求BD,PC是利用点P和点C的横坐标求出,要注意符号;

(3)分两种情况讨论:①△DPE完全在△OAB中时,即当时,如图2所示,重合部分的面积为S就是△DPE的面积;②△DPE有一部分在△OAB中时,当时,如图4所示,△PDN就是重合部分的面积S.

试题解析:(1)把A(3,0),B(0,4)代入中得:

,解得:解析式为:

(2)如图1,当时,AP=2t,∵PC∥x轴,∴,∴,∴OD===,当y=时,=解得:,∴C(﹣1,),由,则PD=2,∴S△BCP=×PC×BD==4;

(3)分两种情况讨论:如图3,当点E在AB上时,由(2)得OD=QM=ME=,∴EQ=,由折叠得:EQ⊥PD,则EQ∥y轴,∴,∴t=,同理得:PD=,∴当时,S=S△PDQ=×PD×MQ=

时,如图4,P′D′=,点Q与点E关于直线P′C′对称,则Q(t,0)、E(t,),∵AB的解析式为:,D′E的解析式为:,则交点N(),∴S=S△P′D′N=×P′D′×FN=,∴

综上所述:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某造纸企业为了更好地处理污水问题,决定购买10台新型污水处理设备.甲、乙两种型号的设备可选,其中每台的价格,月处理污水量如表:

A

B

价格(万元/

10

8

处理污水量(吨/月)

180

150

1)经预算:该企业购买污水处理设备的资金不超过85万元,你认为该企业有哪几种购买方案.

2)在(1)的条件下,若每月需要处理的污水不低于1530吨,为了节约资金,请你为该企业设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:

(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.

(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行一帮一互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1AB=10AE=15.(i=1是指坡面的铅直高度BH与水平宽度AH的比)

1)求点B距水平面AE的高度BH

2)求广告牌CD的高度.

(测角器的高度忽略不计,结果精确到0.1.参考数据:1.4141.732

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列条件:A+B=CC=90°,ACBCAB=345A:∠B:∠C=345a2=(b+c)(bc)中,能确定△ABC是直角三角形的有(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在等边中,点分别在边上.且,过点,交的延长线于点

的度数;

,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校园安全受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有_______人,扇形统计图中基本了解部分所对应扇形的圆心角为_______°;

(2)请补全条形统计图;

(3)若该中学共有学生1800人,请根据上述调查结果,估计该中学学生中对校园安全知识 达到了解基本了解程度的总人数;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ADBE,∠A=∠E

1)求证:∠1=∠2

2)若DC平分∠ADE,直接写出图中所有与∠1相等的角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D,直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.

(1)求m的值及该抛物线的解析式

(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标.

(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案