【题目】如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据:1.414,1.732)
【答案】解:(1)过B作BG⊥DE于G,
在Rt△ABF中,i=tan∠BAH=,∴∠BAH=30°
∴BH=AB=5(米)。
答:点B距水平面AE的高度BH为5米。
(2)由(1)得:BH=5,AH=5,
∴BG=AH+AE=5+15。
在Rt△BGC中,∠CBG=45°,∴CG=BG=5+15。
在Rt△ADE中,∠DAE=60°,AE=15,
∴DE=AE=15。
∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7(米)。
答:宣传牌CD高约2.7米。
【解析】
试题(1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH。
(2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE﹣DE即可求出宣传牌的高度。
科目:初中数学 来源: 题型:
【题目】如图,数轴上线段AB=2(单位长度),线段CD=4(单位长度),点A在数轴上表示的数是-10,点C在数轴上表示的数是16.若线段AB以每秒6个单位长度的速度向右匀速运动,同时线段CD以每秒2个单位长度的速度向左匀速运动.设运动时间为t s.
(1)当点B与点C相遇时,点A、点D在数轴上表示的数分别为________;
(2)当t为何值时,点B刚好与线段CD的中点重合;
(3)当运动到BC=8(单位长度)时,求出此时点B在数轴上表示的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在四边形ABCD的边AB上任取一点E(点E不与A,B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.
【试题再现】如图②,在△ABC中,∠ACB=90°,直角顶点C在直线DE上,分别过点A,B作AD⊥DE于点D,BE⊥DE于点E.求证:△ADC∽△CEB.
【问题探究】在图①中,若∠A=∠B=∠DEC=40°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由.
【深入探究】如图③,AD∥BC,DP平分∠ADC,CP平分∠BCD交DP于点P,过点P作AB⊥AD于点A,交BC于点B.
(1)请证明点P是四边形ABCD的边AB上的一个强相似点.
(2)若AD=3,BC=5,试求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,把一张长10厘米、宽6厘米的长方形纸板分成两个相同的直角三角形.
(1)甲三角形(如图2)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方米?
(2)乙三角形(如图3)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在某地,人们发现在一定温度下某种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀1min叫的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃).
(1)用代数式表示该地当时的温度;
(2)当蟋蟀1min叫的次数分别是84,105和126时,该地当时的温度约是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上点表示数,点表示数,表示点和点之间的距离,且、满足数轴上有一动点,从点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为秒,
(1)点表示的数为 ,点表示的数为 .
(2)点表示的数 (用含的代数式表示);
(3)当点运动 秒时,点和点之间距离为4;
(4)若数轴上另有一动点,同时从点出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当点和点之间距离为6时,求时间的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 1,二次函数的图像过点 A (3,0),B (0,4)两点,动点 P 从 A 出发,在线段 AB 上沿 A → B 的方向以每秒 2 个单位长度的速度运动,过点P作 PD⊥y 于点 D ,交抛物线于点 C .设运动时间为 t (秒).
(1)求二次函数的表达式;
(2)连接 BC ,当t=时,求△BCP的面积;
(3)如图 2,动点 P 从 A 出发时,动点 Q 同时从 O 出发,在线段 OA 上沿 O→A 的方向以 1个单位长度的速度运动,当点 P 与 B 重合时,P 、 Q 两点同时停止运动,连接 DQ 、 PQ ,将△DPQ沿直线 PC 折叠到 △DPE .在运动过程中,设 △DPE 和 △OAB重合部分的面积为 S ,直接写出 S 与 t 的函数关系式及 t 的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4.
(1)若∠1=35°,求∠DAC的度数;
(2)若∠BAC=69°,求∠DAC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某出租车司机从公司出发,在东西方向的人民路上连续接送批客人,行驶路程记录如下(规定向东为正,向西为负,单位:):
第批 | 第批 | 第批 | 第批 | 第批 |
(1)接送完第批客人后,该驾驶员在公司什么方向,距离公司多少千米?
(2)若该出租车每千米耗油升,那么在这过程中共耗油多少升?
(3)若该出租车的计价标准为:行驶路程不超过收费元,超过的部分按每千米元收费,在这过程中该驾驶员共收到车费多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com