【题目】阅读下列推理过程,在括号中填写理由.如图,点、分别在线段、上,,交于点,平分,求证:平分.
证明:∵平分(已知)
∴(______)
∵(已知)
∴(______)
故(______)
∵(已知)
∴(______)
∴(______)
∴(等量代换)
∴平分(______)
科目:初中数学 来源: 题型:
【题目】京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.
(1)若乙队单独施工,需要多少天才能完成该项工程?
(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
问题发现
如图,中,平分,平分,经过点,与、相交于点、,且.
求证:的周长等于.
(1)小明做完该题后,发现、、存在特定的数量关系,请你直接写出这个数量关系;
拓广探索
(2)如图1,将题中“平分”改为“平分的外角”,其他条件不变,请判断、、的数量关系,并证明这个数量关系;
(3)如图2,将题中“平分,平分”改为“平分的外角,平分的外角”,其他条件不变,请直接写出、、的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿着CB方向匀速移动,速度为1cm/s;当△PNM停止平移时,点Q也停止移动,如图②.设移动时间为t(s)(0<t<4).连接PQ、MQ、MC.解答下列问题:
(1)当t为何值时,PQ∥AB?
(2)当t=3时,求△QMC的面积;
(3)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学七班共有45人,该班计划为每名学生购买一套学具,超市现有A、B两种品牌学具可供选择已知1套A学具和1套B学具的售价为45元;2套A学具和5套B学具的售价为150元.
、B两种学具每套的售价分别是多少元?
现在商店规定,若一次性购买A型学具超过20套,则超出部分按原价的6折出售设购买A型学具a套且不超过30套,购买A、B两种型号的学具共花费w元.
请写出w与a的函数关系式;
请帮忙设计最省钱的购买方案,并求出所需费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:河上有一座抛物线形桥洞,已知桥下的水面离桥拱顶部3m时,水面宽AB=6m,建立如图所示的坐标系.
(1)当水位上升0.5m时,求水面宽度CD为多少米?(结果可保留根号)
(2)有一艘游船它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行,若这船宽(最大宽度)2米,从水面到棚顶高度为1.8米.问这艘船能否从桥下洞通过?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式;
(2)求出四边形ABPC的面积最大时的P点坐标和四边形ABPC的最大面积;
(3)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AE是△ABC的角平分线;ED平分∠AEB交AB于点D;∠CAE=∠B.
(1)如果AC=3.5 cm,求AB的长度;
(2)猜想:ED与AB的位置关系,并证明你的猜想。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,的三个顶点在边长为1的正方形网格中,已知,,.
(1)画出关于轴对称的(其中,,分别是,,的对应点,不写画法);
(2)分别写出,,三点的坐标.
(3)请写出所有以为边且与全等的三角形的第三个顶点(不与重合)的坐标_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com