精英家教网 > 初中数学 > 题目详情
16.如图,一个数学兴趣小组在活动课上测得学校旗杆的高度,已知小明站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为32°小红蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).求旗杆EF的高度.(结果精确度0.1米,参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)

分析 过点A作AM⊥EF于点M,过点C作CN⊥EF于点N.设CN=x,分别表示出EM、AM的长度,然后在Rt△AEM中,根据tan∠EAM=0.62,代入求解即可,于是可得EF=DF+CD,代入求解.

解答 解:过点A作AM⊥EF于点M,过点C作CN⊥EF于点N,
设CN=x,
在Rt△ECN中,
∵∠ECN=45°,
∴EN=CN=x,
∴EM=x+0.7-1.7=x-1,
∵BD=5,
∴AM=BF=5+x,
在Rt△AEM中,
∵∠EAM=32°
∴$\frac{EM}{AM}$=0.62,
∴x-1=0.62(x+5),
解得:x≈10.8,
∴EF=x+0.7≈11.5.

点评 本题考查了解直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数的知识求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.在△ABC中,a:b:c=1:1:$\sqrt{2}$,那么△ABC是(  )
A.等腰三角形B.钝角三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,抛物线y=$\frac{1}{2}$x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是抛物线对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.一个多边形截去一个角后其内角和为9000°,那么这个多边形的边数为51或52或53.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知在平面直角坐标系中,点A(-1,0)和C(1,1),动点D(t,t)(点D与点C不重合),二次函数y=ax2-4ax+c的图象与x轴相交于点A和B.
(1)设二次函数y=ax2-4ax+c的顶点为P,若点P与点D关于x轴对称,求此二次函数的解析式.
(2)在D运动时,若在坐标轴上找一点Q,使△QCD为直角三角形,这样的点Q有且仅有4个,求满足条件的t的值或取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知A(0,4)、B(2,4)、C(6,0),点M是折线A-B-C上的一个动点,MN⊥x轴于N,设ON的长为x,△MOC的面积是S,写出S与x之间的函数关系式?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,在平面直角坐标系中直线y=-2x与y=-$\frac{1}{2}$x+b交于点A,则关于x,y的方程组$\left\{\begin{array}{l}{x+2y=2b}\\{2x+y=0}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,已知AB∥CD,那么下列结论中正确的是(  )
A.∠3=∠4B.∠1=∠2C.∠2=∠3D.∠1+∠ACD=180°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(5,3),B(6,5),C(4,6).
画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
将△A1B1C1向左平移6个单位,再向上平移5个单位,画出平移后得到的△A2B2C2,并写出点B2的坐标.

查看答案和解析>>

同步练习册答案