精英家教网 > 初中数学 > 题目详情
(1)已知:如图1,△ABC为正三角形,点M、N分别在BC、CA边上,且BM=CN,BN与AM相交于Q点,试求∠BQM的度数.
解:∵△ABC为正三角形,∴∠ABC=∠ACB=60°,AB=BC.
在△ABM和△BCN中,
      
.
=
      
.
      
.
=∠
      
.
      
.
=
      
.
?△ABM≌△BCN(
 
).
∴∠
 
=∠
 

∴∠BQM=∠
 
+∠
 
=∠
 
+∠
 
=
 
°.
(2)如果将(1)中的正三角形改为正方形ABCD(如图2),点M、N分别在BC、CD边上,且BM=CN,BN与AM相交于Q点,那么∠BQM等于多少度呢?说明理由.
精英家教网
(3)如果将(1)中的“正三角形”改为正五边形、正六边形、…、正n边形(如图3),其余条件都不变,请你根据(1)(2)的求解思路,将你推断的结论填入下表:(正多边形的各个内角都相等)
正多边形 正五边形 正六边形 正n边形
∠BQM的度数
精英家教网
分析:(1)根据等边三角形的性质,三条边都相等,三个角都是直角找出条件,然后利用“边角边”定理证明△ABM和△BCN全等,再根据全等三角形对应角相等得到∠BAM=∠CBN,然后即可证明∠BQM=∠ABQ+∠CBN=60°;
(2)同(1)的思路先证明△ABM和△BCN全等,再根据全等三角形对应角相等得到∠BAM=∠CBN,然后即可证明∠BQM=∠ABQ+∠CBN=90°;
(3)根据规律,∠BQM的度数等于正多边形的一个内角的度数,然后分别求出各多边形的内角的度数即可.
解答:解:(1)故答案为:
AB=BC
∠ABM=∠BCN
BM=CN
,(SAS),∠BAM=∠CBN,
∠BAQ+∠ABQ,∠ABQ+∠QBM,60;

(2)∵ABCD为正方形,
∴∠ABC=∠BCD=90°,AB=BC,
在△ABM和△BCN中,
AB=BC
∠ABM=∠BCN
BM=CN
?△ABM≌△BCN
(SAS),
∴∠BAQ=∠QBM,
∴∠BQM=∠BAQ+∠ABQ=∠ABQ+∠QBM=90°;

(3)108°,120°,180°-
360°
n
(n-2)•180°
n
点评:本题考查了全等三角形的判定与性质,等边三角形的性质,正方形的性质,以及多边形的内角的求法,规律性较强,难度不大,希望同学们熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2007年5月17日我市荣获“国家卫生城市称号”.在“创卫”过程中,要在东西方向M、N两地之间修建一条道路.已知:如图C点周围180m范围内为文物保护区,在MN上点A处测得C在A的北偏东60°方向上,从A向东走500m到达B处精英家教网,测得C在B的北偏西45°方向上.
(1)NM是否穿过文物保护区?为什么?(参考数据:
3
≈1.732)
(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工作需要多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

11、已知,如图,正比例函数与反比例函数的图象相交于A、B两点,A点坐标为(2,1),分别以A、B为圆心的圆与x轴相切,则图中两个阴影部分面积的和为
π

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,∠1=∠2,
 
.求证:AB=AC.
(1)在横线上添加一个使命题的结论成立的条件;
(2)写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为
AD边上一动点(与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1,
(Ⅰ)求BC、AP1的长;
(Ⅱ)设AP=m,梯形PECD的面积为S,求S与m之间的函数关系式,写出自变量m的取值范围;
(Ⅲ)以点E为圆心作⊙E与x轴相切,探究并猜想:⊙P和⊙E有哪几种位置关系,并求出AP相应的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=-
3
3
x2-
2
3
3
x+
3
的图象与x轴分别交于A,B两点,与y轴交精英家教网于C点,⊙M经过原点O及点A、C,点D是劣弧
OA
上一动点(D点与A、O不重合).
(1)求抛物线的顶点E的坐标;
(2)求⊙M的面积;
(3)连CD交AO于点F,延长CD至G,使FG=2,试探究,当点D运动到何处时,直线GA与⊙M相切,并请说明理由.

查看答案和解析>>

同步练习册答案