精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于点AB.点C的坐标是(﹣1,0),抛物线yax2+bx﹣2经过AC两点且交y轴于点D.点Px轴上一点,过点Px轴的垂线交直线AB于点M,交抛物线于点Q,连结DQ,设点P的横坐标为mm≠0).

(1)求点A的坐标.

(2)求抛物线的表达式.

(3)当以BDQM为顶点的四边形是平行四边形时,求m的值.

【答案】(1)点A坐标为(4,0);(2)yx2x﹣2;(3)m=21+1﹣

【解析】

(1)直线y=﹣x+2中令y=0,即可求得A 点坐标

(2)A、C坐标代入,利用待定系数法进行求解即可;

(3)先求出BD的长,用含m的式子表示出MQ的长,然后根据BD=QM,得到关于m的方程,求解即可得.

(1)y=﹣x+2=0,解得:x=4,

所以点A坐标为:(4,0);

(2)把点AC坐标代入二次函数表达式,得

解得:

故:二次函数表达式为:yx2x﹣2;

(3)y=﹣x+2中,令x=0,y=2,B(0,2),

yx2x﹣2中,令x=0,y=-2,D(0,-2),

所以BD=4,

设点M(m,﹣m+2),则Q(mm2m﹣2),

MQ=|(m2m﹣2)-(﹣m+2)|=|m2m﹣4|

BDQM为顶点的四边形是平行四边形时,

则:|MQ|=BD=4,

|m2m﹣4|=4,

m2m﹣4=-4

解得:m=2m=0(舍去);

m2m﹣4=4

解得m=1±

故:m=21+1-

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=+mx+3x轴交于AB两点,与y轴交于点C,点B的坐标为(30),

1)求m的值及抛物线的顶点坐标.

2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点C(0,2),点P是抛物线上的一个动点,过点PPQx轴,垂足为Q,交直线BC于点D.

(1)求该抛物线的函数表达式;

(2)若以P、D、O、C为顶点的四边形是平行四边形,求点Q的坐标;

(3)如图2,当点P位于直线BC上方的抛物线上时,过点PPEBC于点E,设PDE的面积为S,求当S取得最大值时点P的坐标,并求S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°,ACBCAB=8.点P从点A出发,以每秒2个单位长度的速度沿边AB向点B运动.过点PPDAB交折线ACCB于点D,以PD为边在PD右侧做正方形PDEF.设正方形PDEFABC重叠部分图形的面积为S,点P的运动时间为t秒(0<t<4).

(1)当点D在边AC上时,正方形PDEF的边长为   (用含t的代数式表示).

(2)当点E落在边BC上时,求t的值.

(3)当点D在边AC上时,求St之间的函数关系式.

(4)作射线PE交边BC于点G,连结DF.当DF=4EG时,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m。设AD的长为xm,DC的长为ym。

(1)求y与x之间的函数关系式;

(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是米数,求出满足条件的所有围建方案。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有(  )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=x+3与抛物线交于AB两点,点Ax轴上,点B的横坐标为.动点P在抛物线上运动(不与点AB重合),过点Py轴的平行线,交直线AB于点Q.当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MNy轴在PQ的同侧,连结PM.设点P的横坐标为m

1)求bc的值.

2)当点N落在直线AB上时,直接写出m的取值范围.

3)当点PAB两点之间的抛物线上运动时,设正方形PQMN的周长为C,求Cm之间的函数关系式,并写出Cm增大而增大时m的取值范围.

4)当PQM与坐标轴有2个公共点时,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在创建书香校园活动中,为了解学生的读书情况,某校抽样调查了部分同学在一周内的阅读时间,绘制如下统计图.根据图中信息,解答下列问题:

(1)被抽查学生阅读时间的中位数为_______h,众数为________h;平均数为________h:

(2)若该校共有800名学生,请你估算该校一周内阅读时间不少于3h的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015年12月16﹣18日,第二届互联网大会在浙江乌镇胜利举行,这说明我国互联网发展走到了世界的前列,尤其是电子商务.据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y(件)与销售单价x(元)之间的函数关系如图所示.

(1)当销售单价定为50元时,求每月的销售件数;

(2)设每月获得利润为w(元),求每月获得利润w(元)关于销售单价x(元)的函数解析式;

(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量)

查看答案和解析>>

同步练习册答案