精英家教网 > 初中数学 > 题目详情

【题目】2015年12月16﹣18日,第二届互联网大会在浙江乌镇胜利举行,这说明我国互联网发展走到了世界的前列,尤其是电子商务.据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y(件)与销售单价x(元)之间的函数关系如图所示.

(1)当销售单价定为50元时,求每月的销售件数;

(2)设每月获得利润为w(元),求每月获得利润w(元)关于销售单价x(元)的函数解析式;

(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量)

【答案】(1)500件;(2)w=﹣10x2+1400x﹣40000;(3)10000元.

【解析】

1)设ykx+b,把(40600),(75250)代入,列方程组即可.(2)根据利润=每件的利润×销售量,列出式子即可.(3)思想列出不等式求出x的取值范围,设成本为S,构建一次函数,利用二次函数的性质即可解决问题.

解:(1)设ykx+b,把(40600),(75250)代入可得 ,交点

y=﹣10x+1000

x50时,y=﹣10×50+1000500件.

2w=(x40)(﹣10x+1000)=﹣10x2+1400x40000

3)由题意

解得60≤x≤75

设成本为S

S40(﹣10x+1000)=﹣400x+40000

∵﹣4000

Sx增大而减小,

x75时,S有最小值=10000元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于点AB.点C的坐标是(﹣1,0),抛物线yax2+bx﹣2经过AC两点且交y轴于点D.点Px轴上一点,过点Px轴的垂线交直线AB于点M,交抛物线于点Q,连结DQ,设点P的横坐标为mm≠0).

(1)求点A的坐标.

(2)求抛物线的表达式.

(3)当以BDQM为顶点的四边形是平行四边形时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》中记载了这样一个问题,大意为:有一个善于走路的人和一个不善于走路的人.善于走路的人走100步的同时,不善于走路的人只能走60步.现不善于走路的人先走100步,善于走路的人追他,则要走多少步才能追上(两人步长相等)?设善于走路的人走x步可追上,则可列方程为____________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC、△DCE、△HEF、是三个全等的等边三角形,点BCEF在同一条直线上,连接AF,与DCDEHE分别相交于点PMK,若△DPM的面积为2,则图中三个阴影部分的面积之和为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为的正六边形A1A2A3A4A5A6在直线上由图1的位置按顺时针

方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的

长为( ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了方便孩子入学,小王家购买了一套学区房,交首付款15万元,剩余部分向银行贷款,贷款及贷款利息按月分期还款,每月还款数相同.计划每月还款y万元,x个月还清贷款,若yx的反比例函数,其图象如图所示:

(1)求yx的函数解析式;

(2)若小王家计划180个月(15年)还清贷款,则每月应还款多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有长为 24m 的篱笆,现一面利用墙(墙的最大可用长度 a 10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽 AB xm,面积为 Sm2

1 S x 的函数关系式及 x 值的取值范围;

2 要围成面积为 45m2 的花圃,AB 的长是多少米?

3 AB 的长是多少米时,围成的花圃的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.

1)求n的值;

2)若FDE的中点,判断四边形ACFD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6⊙O相交(点O为坐标原点),则m的取值范围为_____

查看答案和解析>>

同步练习册答案