精英家教网 > 初中数学 > 题目详情

【题目】已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6⊙O相交(点O为坐标原点),则m的取值范围为_____

【答案】m<

【解析】

利用待定系数法解答得出平移后得到的直线,求出A、B点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.

把点(12,﹣5)代入直线y=kx得,
﹣5=12k,
∴k=﹣
由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m(m>0),
设直线l与x轴、y轴分别交于点A、B,(如图所示)
当x=0时,y=m;当y=0时,x=m,
∴A(m,0),B(0,m),
即OA=m,OB=m,
在Rt△OAB中,AB=m
过点O作OD⊥AB于D,
∵S△ABO=ODAB=OAOB,
OD=××
∵m>0,解得OD=m,
由直线与圆的位置关系可知m<6,解得m<
故答案为:m<.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2015年12月16﹣18日,第二届互联网大会在浙江乌镇胜利举行,这说明我国互联网发展走到了世界的前列,尤其是电子商务.据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y(件)与销售单价x(元)之间的函数关系如图所示.

(1)当销售单价定为50元时,求每月的销售件数;

(2)设每月获得利润为w(元),求每月获得利润w(元)关于销售单价x(元)的函数解析式;

(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,反比例函数(x>0)与正比例函数y=kx、 (k>1)的图象分别交于点A、B,若∠AOB=45°,则AOB的面积是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D在O的直径AB的延长线上,点C在O上,AC=CD,ACD=120°.

(1)求证:CD是O的切线;

(2)若O的半径为2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx﹣3a经过点A﹣10)、C03),与x轴交于另一点B,抛物线的顶点为D

1)求此二次函数解析式;

2)连接DCBCDB,求证:△BCD是直角三角形;

3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C重合,点QEF分别在BCABAC上(点E与点A、点B均不重合).

(1)当AE=8时,求EF的长;

(2)设AEx,矩形EFPQ的面积为y

yx的函数关系式;

x为何值时,y有最大值,最大值是多少?

(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求St的函数关系式,并写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yax2+bx+1x轴分别交于A(10)B(30),与y轴交于点C

(1)求抛物线解析式;

(2)在直线BC上方的抛物线上有点P,使△PBC面积为1,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数 yx﹣3 与反比例函数 y的图象相交于点 A(4,n),与 x 轴相交于点 B

(1)求 n k 的值;

(2)以 AB 为边作菱形 ABCD,使点 C x 轴正半轴上,点 D 在第一象限,求点 D 的坐标;

(3)观察反比例函数y=的图象,当 y>﹣2 时,请直接写出自变量 x 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于平面直角坐标系xOy中的点PQ和图形G,给出如下定义:点PQ都在图形G上,且将点P的横坐标与纵坐标互换后得到点Q,则称点PQ是图形G的一对关联点.例如,点P12)和点Q21)是直线y=﹣x+3的一对关联点.

1)请写出反比例函数y的图象上的一对关联点的坐标:   

2)抛物线yx2+bx+c的对称轴为直线x1,与y轴交于点C0,﹣1).点AB是抛物线yx2+bx+c的一对关联点,直线ABx轴交于点D10).求AB两点坐标.

3)⊙T的半径为3,点MN是⊙T的一对关联点,且点M的坐标为(1m)(m1),请直接写出m的取值范围.

查看答案和解析>>

同步练习册答案