精英家教网 > 初中数学 > 题目详情

【题目】对于平面直角坐标系xOy中的点PQ和图形G,给出如下定义:点PQ都在图形G上,且将点P的横坐标与纵坐标互换后得到点Q,则称点PQ是图形G的一对关联点.例如,点P12)和点Q21)是直线y=﹣x+3的一对关联点.

1)请写出反比例函数y的图象上的一对关联点的坐标:   

2)抛物线yx2+bx+c的对称轴为直线x1,与y轴交于点C0,﹣1).点AB是抛物线yx2+bx+c的一对关联点,直线ABx轴交于点D10).求AB两点坐标.

3)⊙T的半径为3,点MN是⊙T的一对关联点,且点M的坐标为(1m)(m1),请直接写出m的取值范围.

【答案】(1)(23),(32).(2AB两点坐标为(﹣12)和(2,﹣1).(31m1+3

【解析】

(1)根据反比例函数性质即可写出.

(2)根据题意可求出抛物线的解析式为yx2﹣2x﹣1, 直线ABx轴交于点D(1,0)得到直线AB的解析式为y=﹣x+1,联立直线AB及抛物线解析式成方程组即可解出AB两点坐标.

(3)点MN关于直线yx对称得到T的圆心在直线yx上,进而求得M1M2的值即可求出m的取值范围.

解:(1)∵2×33×26

∴点(23),(32)是反比例函数y的图象上的一对关联点.

故答案为:(23),(32).

2)∵抛物线yx2bxc的对称轴为直线x1

∴﹣1

解得:b=﹣2

∵抛物线yx2bxcy轴交于点C0,﹣1),

c=﹣1

∴抛物线的解析式为yx22x1

由关联点定义,可知:点AB关于直线yx对称.

又∵直线ABx轴交于点D10),

∴直线AB的解析式为y=﹣x1

联立直线AB及抛物线解析式成方程组,得:

解得:

AB两点坐标为(﹣12)和(2,﹣1).

3)由关联点定义,可知:点MN关于直线yx对称,

∴⊙T的圆心在直线yx上.

∵⊙T的半径为3

M1M2×2×33

m的取值范围为1m≤13

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6⊙O相交(点O为坐标原点),则m的取值范围为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.

(1)求证:COM∽△CBA;

(2)求线段OM的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+b的图象与反比例函数y的图象交于AB两点.

1)利用图中的条件,求反比例函数和一次函数的解析式.

2)求△AOB的面积.

3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下表显示了同学们用计算机模拟随机投针实验的某次实验的结果.

投针次数n

1000

2000

3000

4000

5000

10000

20000

针与直线相交的次数m

454

970

1430

1912

2386

4769

9548

针与直线相交的频率p

0.454

0.485

0.4767

0.478

0.4772

0.4769

0.4774

下面有三个推断:

①投掷1000次时,针与直线相交的次数是454,针与直线相交的概率是0.454

②随着实验次数的增加,针与直线相交的频率总在0.477附近,显示出一定的稳定性,可以估计针与直线相交的概率是0.477

③若再次用计算机模拟此实验,则当投掷次数为10000时,针与直线相交的频率一定是0.4769

其中合理的推断的序号是:_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点DE分别在边ABAC上,DEBC,∠ACD=∠B,那么下列判断中,不正确的是(  )

A. ADE∽△ABC B. CDE∽△BCD C. ADE∽△ACD D. ADE∽△DBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC,∠BAC=90°,ABACD为直线BC上一动点(点D不与BC重合),AD为直角边在AD右侧作等腰直角三角形ADE且∠DAE=90°,连接CE

(1)如图①,当点D在线段BC上时

BCCE的位置关系为   

BCCDCE之间的数量关系为   

(2)如图②,当点D在线段CB的延长线上时结论①,②是否仍然成立?若不成立请你写出正确结论并给予证明

(3)如图③,当点D在线段BC的延长线上时BCCDCE之间的数量关系为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:

(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.

(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.

(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出 sinα的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A1的坐标为(2,0),过点A1x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是_____

查看答案和解析>>

同步练习册答案