精英家教网 > 初中数学 > 题目详情

【题目】如图,已知一次函数 yx﹣3 与反比例函数 y的图象相交于点 A(4,n),与 x 轴相交于点 B

(1)求 n k 的值;

(2)以 AB 为边作菱形 ABCD,使点 C x 轴正半轴上,点 D 在第一象限,求点 D 的坐标;

(3)观察反比例函数y=的图象,当 y>﹣2 时,请直接写出自变量 x 的取值范围.

【答案】(1)n=3,k=12;(2)D(4+,3);(3) x<﹣6 或 x>0.

【解析】

(1)因为点在一次函数yx﹣3 的图象上,所以,又因为点在反比例函数图象上,所以k=12.

(2)首先根据直线方程求出点B的坐标,再由勾股定理求出菱形边长,再由菱形性质得知四边相等,最后根据平移性质的关系即可写出点的坐标.

(3)根据反比函数的性质即可得到当y>-2时,自变量x的取值范围.

解:(1)把 A 点坐标代入一次函数解析式可得 n×4﹣3=3,

A(4,3),

A 点在反比例函数图象上,

k=3×4=12;

(2)在 yx﹣3 中,令 y=0 可得 x=2,

B(2,0),

A(4,3),

AB

∵四边形 ABCD 为菱形,且点 C x 轴正半轴上,点 D 在第一象限,

BCAB

∴点 C 由点 B 向右平移个单位得到,

∴点 D 由点 A 向右平移个单位得到,

D(4+,3);

(3)由(1)可知反比例函数解析式为 y y=﹣2 可得 x=﹣6,

结合图象可知当 y>﹣2 时,x 的取值范围为 x<﹣6 x>0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.

1)求n的值;

2)若FDE的中点,判断四边形ACFD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6⊙O相交(点O为坐标原点),则m的取值范围为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小东设计的在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似的尺规作图过程.

已知:ABC

求作:在BC边上求作一点P,使得PAC∽△ABC

作法:如图,

①作线段AC的垂直平分线GH

②作线段AB的垂直平分线EF,交GH于点O

③以点O为圆心,以OA为半径作圆;

④以点C为圆心,CA为半径画弧,交⊙O于点D(与点A不重合);

⑤连接线段ADBC于点P

所以点P就是所求作的点.

根据小东设计的尺规作图过程,

(1)使用直尺和圆规,补全图形;(保留作图痕迹)

(2)完成下面的证明.

证明:∵CDAC

   

∴∠      

又∵∠      

∴△PAC∽△ABC   )(填推理的依据).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过y轴上一个动点Mx轴的平行线,交双曲线y= 于点A,交双曲线于点B,点C、点Dx轴上运动,且始终保持DCAB,则平行四边形ABCD的面积是(  )

A. 7 B. 10 C. 14 D. 28

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.

(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?

(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.

(1)求证:COM∽△CBA;

(2)求线段OM的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+b的图象与反比例函数y的图象交于AB两点.

1)利用图中的条件,求反比例函数和一次函数的解析式.

2)求△AOB的面积.

3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:

(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.

(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.

(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出 sinα的值.

查看答案和解析>>

同步练习册答案