【题目】计算:
(1)9﹣(﹣5)﹣(+2)+(﹣4)﹣5
(2)﹣|﹣7|+(+3)﹣5
(3)﹣|﹣1|﹣(+2)﹣(﹣2.75)
(4)﹣9÷3+(﹣)×12+(﹣3)2
(5)﹣5×(﹣3)+(﹣9)×(3)+17×(﹣3)
(6)()÷(﹣)
【答案】(1)3;(2)﹣9;(3)﹣;(4)8;(5)﹣75;(6)﹣31.
【解析】
(1)利用减法法则变形,计算即可求出值;
(2)先计算绝对值,再利用加减法法则计算即可求出值;
(3)先计算绝对值,再利用加减法法则计算即可求出值;
(4)先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.
(5)逆用乘法分配律即可求出值.
(6)先把除法化成乘法,再根据乘法分配律即可求出值.
(1)9﹣(﹣5)﹣(+2)+(﹣4)﹣5
=9+5+(﹣2)+(﹣4)+(﹣5)
=3;
(2)﹣|﹣7|+(+3)﹣5
=﹣7+3+(﹣5)
=﹣7+3+(﹣5)
=﹣9;
(3)﹣|﹣1|﹣(+2)﹣(﹣2.75)
=+(﹣2)+2
=﹣;
(4)﹣9÷3+()×12+(﹣3)2
=﹣3+×12+9
=﹣3+2+9
=8;
(5)﹣5×(﹣3)+(﹣9)×(3)+17×(﹣3)
=5×3﹣9×3﹣17×3
=(5﹣9﹣17)×3
=(﹣21)×
=﹣75;
(6)()÷(﹣)
=()×(﹣60)
=(﹣40)+5+4
=﹣31.
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子中放有四张分别写有数字1、2、3、4的红色卡片和三张分别写有数字1、2、3的蓝色卡片,卡片除颜色和数字外其它完全相同。
(1)从中任意抽取一张卡片,则该卡片上写有数字1的概率是;
(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率。(请利用树状图或列表法说明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.
(1)求证:AE=2CE;
(2)连接CD,请判断△BCD的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】a,b分别是数轴上两个不同点A,B所表示的有理数,且|a|=5,|b|=2,A,B两点在数轴上的位置如图所示:
(1)试确定数a,b;
(2)A,B两点相距多少个单位长度?
(3)若C点在数轴上,C点到B点的距离是C点到A点距离的,求C点表示的数;
(4)点P从A点出发,先向左移动1个单位长度,再向右移动2个单位长度,再向左移动3个单位长度,再向右移动4个单位长度,依次操作2 019次后,求P点表示的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,AC=2,BC=4.点D是线段BC上的一个动点.点D与点B、C不重合,过点D作DE⊥BC交AB于点E,将△ABC沿着直线DE翻折,使点B落在直线BC上的F点.
(1)设∠BAC=α(如图①),求∠AEF的大小;(用含α的代数式表示)
(2)当点F与点C重合时(如图②),求线段DE的长度;
(3)设BD=x,△EDF与△ABC重叠部分的面积为S,试求出S与x之间函数关系式,并写出自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:
①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有______(请将结论正确的序号全部填上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:
(1)本次抽样调查共抽取了多少名学生?
(2)求测试结果为C等级的学生数,并补全条形图;
(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?
(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.
(1)求两批次购进蒜薹各多少吨;
(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com