精英家教网 > 初中数学 > 题目详情

如图,抛物线y=ax2+bx(a>0)与双曲线y=数学公式相交于点A,B.已知点A的坐标为(1,4),点B在第三象限内,连结AB交y轴于点E,且S△BOE=数学公式S△AOB(O为坐标原点).
(1)求此抛物线的函数关系式;
(2)过点A作直线平行于x轴交抛物线于另一点C.问在y轴上是否存在点P,使△POC与△OBE相似,若存在,求出点P的坐标;若不存在,请简要说明理由;
(3)抛物线与x轴的负半轴交于点D,过点B作直线l∥y轴,点Q在直线l上运动,且点Q的纵坐标为t,试探索:当S△AOB<S△QOD<S△BOC时,求t的取值范围.

解:(1)点A(1,4)在双曲线y=上,得k=4
∵S△BOE=S△AOB
∴|xA|:|xB|=1:2
∴xB=-2,
∵点B在双曲线y=上,
∴点B的坐标为(-2,-2)
∵点A,B都在y=ax2+bx(a>0)上,

解得:
所求的二次函数的解析式为:y=x2+3x;

(2)∵点C坐标为(-4,4),若点P在y轴的正半轴,则∠POC=45°,不符合题意.
所以点P在y轴的负半轴上,则∠POC=45°
此时有∠POC=∠BOE=135°,
所以时,
△POC与△OBE相似
∴OP=4或8.
所以点P的坐标为(0,-4)或(0,-8);

(3)设点Q的坐标为(-2,t)
∵直线AB经过点A(1,4),B(-2,-2)
∴直线AB的函数关系式为y=2x+2
∴E(0,2)
由y=x2+3x可知点D(-3,0).
∵S△AOB=3,S△QOD=,S△BOC=8
∴3<<8
当t≥0时,2<t<
当t<0时,-<t<-2
综上:2<t<或-<t<-2
分析:(1)首先求得反比例函数的解析式,然后求得点B的坐标,利用待定系数法求得抛物线的解析式即可;
(2)根据△POC与△OBE相似,得到OP=4或8,从而求得点P的坐标即可;
(3)求得点Q、点E、点D的坐标,从而表示出S△AOB=3,S△QOD=,S△BOC=8,得到3<<8,从而求得t的取值范围;
点评:此题考查了二次函数的综合题目,第一问的解答关键是掌握待定系数法的运用,求解第二问需要我们会根据相似三角形的性质求线段的长,涉及到了分类讨论的数学思想,此类综合题目,难度较大,注意逐步分析.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案