精英家教网 > 初中数学 > 题目详情

【题目】直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=0.5,OB=4,OE=2.
(1)求直线AB和反比例函数的解析式;
(2)求△OCD的面积.

【答案】
(1)解:在Rt△AOB中,∵tan∠ABO=0.5,OB=4,

∴OA=2,

∴A(0,2),B(4,0),设直线AB的解析式为y=kx+b,则有 ,解得

∴直线AB的解析式为y=﹣ x+2,

∵OE=2,CE⊥x轴,

∴C(﹣2,3),设反比例函数的解析式为y=

∴k=﹣6,

∴直线AB和反比例函数的解析式分别为y=﹣ x+2,y=﹣


(2)解:由 解得

∴D(6,﹣1),

∴SCOD=SAOC+SAOD= ×2×2+ ×2×6=8.


【解析】(1)在Rt△AOB中,由tan∠ABO=0.5,OB=4,推出OA=2,推出A(0,2),B(4,0),设直线AB的解析式为y=kx+b,利用待定系数法即可解决问题.(2)利用方程组求出点D坐标,根据SCOD=SAOC+SAOD计算即可.
【考点精析】关于本题考查的解直角三角形,需要了解解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,一条直线经过点A(1,3)和B(2,5).求:
(1)这个一次函数的解析式.
(2)当x=﹣3时,y的值.
(3)求此一次函数与x轴、y轴的交点坐标及其图像与两坐标轴围成的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】11·西宁)(本小题满分7分)给出三个整式a2b22ab

1)当a3b4时,求a2b22ab的值;

2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写也你所选的式子及因式分解的过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数与反比例函数的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是(
A.x<﹣1
B.x>2
C.﹣1<x<0,或x>2
D.x<﹣1,或0<x<2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数在x= 时,有最小值﹣ ,且函数的图象经过点(0,2),则此函数的解析式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,已知:在ABC中,BAC90°AB=AC,直线m经过点ABD直线m, CE直线m,垂足分别为点DE.证明:DE=BD+CE.

2 如图2,将1中的条件改为:在ABC中,AB=ACDAE三点都在直线m,并且有BDA=AEC=BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3拓展与应用:如图3DEDAE三点所在直线m上的两动点(DAE三点互不重合),FBAC平分线上的一点,ABFACF均为等边三角形,连接BDCE,BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线的对称轴为x=﹣1,与x轴交于A,B两点,与y轴交于点C,其中A(﹣3,0)、C(0,﹣2).
(1)求这条抛物线的函数表达式.
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标.
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1) 定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=__________________

(2)应用:已知正方形ABCD的边长为4,点PAD边上的一点,AP= ,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x= ,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2 . 上述说法正确的是(
A.①②④
B.③④
C.①③④
D.①②

查看答案和解析>>

同步练习册答案