精英家教网 > 初中数学 > 题目详情

【题目】要从甲、乙两名同学中选出一名,代表班级参加射击比赛. 现将甲、乙两名同学参加射击训练的成绩绘制成下列两个统计图:

根据以上信息,整理分析数据如下:

平均成绩()

中位数()

众数()

方差()

7

7

1. 2

7. 5

4. 2

(1)分别求表格中的值.

(2)如果其他参赛选手的射击成绩都在7环左右,应该选______队员参赛更适合;如果其他参赛选手的射击成绩都在8环左右,应该选______队员参赛更适合.

【答案】(1)a=7b=7c=8(2)甲,乙

【解析】

1)首先根据统计图中的信息,可得出乙的平均成绩a和众数c;根据统计图,将甲的成绩从小到大重新排列,即可得出中位数b

2)根据甲乙的中位数、众数和方差,可以判定参赛情况.

(1)a×(3+6+4+8×3+7×2+9+10)7

∵甲射击的成绩从小到大从新排列为:5667777889

b7c8.

(2)甲的方差较大,说明甲的成绩波动较大,而且甲的成绩众数为7,故如果其他参赛选手的射击成绩都在7环左右,应该选甲参赛更适合;乙的中位数和众数都接近8,故如果其他参赛选手的射击成绩都在8环左右,应该选乙参赛更适合.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题再现:

数形结合是一种重要的数学思想方法,借助这种思想方法可将抽象的数学知识变得直观并且具有可操作性.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.

例如:利用图形的几何意义验证完全平方公式.

将一个边长为的正方形的边长增加,形成两个长方形和两个正方形,如图所示:这个图形的面积可以表示成:

这就验证了两数和的完全平方公式.

类比解决:

请你类比上述方法,利用图形的几何意义验证平方差公式.

(要求画出图形并写出推理过程)

问题提出:如何利用图形几何意义的方法证明

如图所示,表示11×1的正方形,即:表示12×2的正方形,恰好可以拼成12×2的正方形,因此:就可以表示22×2的正方形,即:恰好可以拼成一个的大正方形.

由此可得:.

尝试解决:

请你类比上述推导过程,利用图形的几何意义确定:_______.(要求写出结论并构造图形写出推证过程).

问题拓广:

请用上面的表示几何图形面积的方法探究:_______.(直接写出结论即可,不必写出解题过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名自行车爱好者准备在段长为3500米的笔直公路上进行比赛,比赛开始时乙在起点,甲在乙的前面.他们同时出发,匀速前进,已知甲的速度为12/秒,设甲、乙两人之间的距离为s(),比赛时间为t(),图中的折线表示从两人出发至其中一人先到达终点的过程中s()t()的函数关系根据图中信息,回答下列问题:

(1)乙的速度为多少米/秒;

(2)当乙追上甲时,求乙距起点多少米;

(3)求线段BC所在直线的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形的对角线相交于点.

(1)求证:四边形是正方形.

(2),则点到边的距离为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BE=4,CD=6,则DE的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读理解下面的例题,再按要求解答下列问题:

例题:解一元二次不等式x2﹣4>0

解:∵x2﹣4=(x+2)(x﹣2)

∴x2﹣4>0可化为

(x+2)(x﹣2)>0

由有理数的乘法法则“两数相乘,同号得正”,得

解不等式组①,得x>2,

解不等式组②,得x<﹣2,

∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,

即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.

解答下列问题:

(1)一元二次不等式x2﹣25>0的解集为   

(2)分式不等式的解集为   

(3)解一元二次不等式2x2﹣3x<0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E

(1)证明:四边形ACDE是平行四边形;

(2)AC8BD6,求平行四边形ACDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017南宁,第26题,10分)如图,已知抛物线与坐标轴交于ABC三点,其中C(0,3),BAC的平分线AEy轴于点D,交BC于点E,过点D的直线l与射线ACAB分别交于点MN

(1)直接写出a的值、点A的坐标及抛物线的对称轴;

(2)点P为抛物线的对称轴上一动点,若PAD为等腰三角形,求出点P的坐标;

(3)证明:当直线l绕点D旋转时,均为定值,并求出该定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解

ABC中,ABBCAC三边的长分别为2,求这个三角形的面积.

解法一:如图1,因为ABC是等腰三角形,并且底AC2,根据勾股定理可以求得底边的高AF1,所以SABC×2×11

解法二:建立边长为1的正方形网格,在网格中画出ABC,使ABC三个顶点都在小正方形的顶点处,如图2所示,借用网格面积可得SABCS矩形ADECSABDSEBC1

方法迁移:请解答下面的问题:

ABC中,ABACBC三边的长分别为,求这个三角形的面积.

查看答案和解析>>

同步练习册答案