【题目】如图,在△ABC中,D、E分别是AB、AC的中点,F是DE延长线上的点,且EF=DE
(1)图中的平行四边形有哪几个?请选择其中一个说明理由;
(2)若△AEF的面积是3,求四边形BCFD的面积.
【答案】(1)平行四边形ADCF,平行四边形BDFC,(2)12.
【解析】
试题分析:(1)由E为AC的中点,可得AE=CE,再由条件EF=DE 可得四边形ADCF是平行四边形;
(2)根据等底等高的三角形面积相等可得平行四边形对角线分成的四个小三角形面积相等可得△CEF的面积和△CED的面积都等于△AEF的面积为3,从而可得四边形BCFD的面积为12.
(1)图中的平行四边形有:平行四边形ADCF,平行四边形BDFC,
理由是:∵E为AC的中点,
∴AE=CE,
∵DE=EF,
∴四边形ADCF是平行四边形,
∴AD∥CF,AD=CF,
∵D为AB的中点,
∴AD=BD,
∴BD=CF,BD∥CF,
∴四边形BDFC是平行四边形.
(2)由(1)知四边形ADCF是平行四边形,四边形BDFC是平行四边形,
∴S△CEF=S△CED=S△AEF=3,
∴平行四边形BCFD的面积是12.
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 全等三角形是指面积相等的两个三角形B. 所有的等边三角形是全等三角形
C. 全等三角形的边相等D. 全等三角形的周长相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若干个苹果分给x个小孩,如果每人分3个,那么余7个;如果每人分5个,那么最后一人分到的苹果不足5个,则x满足的不等式组为( )
A.0<(3x+7)﹣5(x﹣1)≤5
B.0<(3x+7)﹣5(x﹣1)<5
C.0≤(3x+7)﹣5(x﹣1)<5
D.0≤(3x+7)﹣5(x﹣1)≤5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法:①所有有理数都能用数轴上的点表示; ②符号不同的两个数互为相反数; ③有理数包括整数和分数; ④两数相加,和一定大于任意一个加数.( )
A. 3个 B. 2个 C. 1个 D. 0个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com