精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC≌△ADE,BC的延长线交DAF,交DEG,∠ACB=∠AED=105°,∠CAD=10°,∠B=∠D=25°,求∠DFB、∠DGB的度数.

【答案】∠DFB=85°;∠DGB=60°.

【解析】

根据三角形的内角和定理求出∠BAC,再求出∠BAF,然后根据三角形的一个外角等于与它不相邻的两个内角的和分别求解即可.

∵∠ACB=105°,∠B=25°,

∴∠BAC=180°﹣∠ACB﹣∠B=180°﹣105°﹣25°=50°,

∵∠CAD=10°,

∴∠BAF=∠BAC+∠CAD=50°+10°=60°,

在△ABF中,∠DFB=∠B+∠BAF=25°+60°=85°;

∵∠D=25°,

∴在△DGF中,∠DGB=∠DFB﹣∠D=85°﹣25°=60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图数轴上点 A、B 到表示-2 的点的距离都为 6,P 为线段 AB 上任一点,C,D 两点分别从 P,B 同时向 A 点移动 C 点运动速度为每秒 2 个单位长度,D 点运动速度 为每秒 3 个单位长度,运动时间为 t .

(1)A 点表示数为 ,B 点表示的数为 ,AB= .

(2)若 P 点表示的数是 0,

①运动 1 秒后,求 CD 的长度;

②当 D BP 上运动时,求线段 AC、CD 之间的数量关系式.

(3)若 t=2 秒时,CD=1,请直接写出 P 点表示的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,如果CD= ,则AD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD= ∠BAC=60°,于是 = = ; 迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三点在同一条直线上,连接BD.

(1)①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;
(2)拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
①证明△CEF是等边三角形;
②若AE=5,CE=2,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为4028,则△EDF的面积为(  )

A. 12 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,ABC中,AB=ACBAC=90°,点D是直线AB上的一动点(不和AB重合),BECDE,交直线ACF.

1)点D在边AB上时,试探究线段BDABAF的数量关系,并证明你的结论;

2)点DAB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请直接写出正确结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,FCD上一点,∠EFD=60°,AEC=2CEF,若6°<BAE<15°,C的度数为整数,则∠C的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知直线l1l2,且l3l1l2分别相交于AB两点,l4l1l2分别交于CD两点,∠ACP1BDP2CPD3

P在线段AB

(1)若∠122°233°,则∠3________

(2)试找出∠123之间的等量关系,并说明理由;

(3)应用(2)中的结论解答下列问题

如图②AB处北偏东40°的方向上,在C处的北偏西45°的方向上,求∠BAC的度数;

(4)如果点P在直线l3上且在AB两点外侧运动时,其他条件不变,试探究∠123之间的关系(PAB两点不重合),直接写出结论即可.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九(1)、九(2)两班的班长交流了为四川安雅地震灾区捐款的情况:

)九(1)班班长说:我们班捐款总数为1200元,我们班人数比你们班多8人.

)九(2)班班长说:我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%

请根据两个班长的对话,求这两个班级每班的人均捐款数.

查看答案和解析>>

同步练习册答案