【题目】如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax﹣3a与x轴交于A、B两点,与y轴交于点C,BO=CO.
(1)求抛物线的解析式;
(2)点P是第一象限抛物线上的一动点,连接AP,交y轴于点D,连接CP,设P点横坐标为t,△CDP的面积为S,求S与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,过点P作PE⊥x轴于点E,连接PB,过点A作AF⊥PB于点F,交线段PE于点G,若点H在x轴负半轴上,PH=2GE,点M(0,m)在y轴正半轴上,连接PM、PH,∠HPM=2∠BHP,PH=2PM,求m的值.
【答案】(1)y=﹣x2+2x+3.(2)S =t2.(3)m=.
【解析】试题分析:(1)由ax2﹣2ax﹣3a=0时,解得x=3或﹣1,推出A(﹣1,0),B(3,0),推出OA=1,OB=3,推出OC=OB=3,推出﹣3a=3,可得a=﹣1,即可解决问题;
(2)如图1中,作PE⊥x轴于E,PK⊥y轴于K.P(t,﹣t2+2t+3,由∠PAE=∠DAO,可得tan∠PAE=tan∠DAO,可得 ,即,可得OD=3﹣t,CD=3﹣OD=t,再根据S=PKCD=计算即可;
(3)首先证明△PKM≌△PKN,推出PM=PN,MK=NK,再证明△HON≌△PKN,推出PK=HO,由∠3=∠5,可得tan∠3=tan∠5,可得 ,BE=OB﹣OE=3﹣t,即,可得GE=1,推出OH=2EG=2,推出PK=2,PE=3,推出OK=3=OC,推出点K与点C重合,由此即可解决问题.
试题解析:(1)当ax2﹣2ax﹣3a=0时,解得x=3或﹣1,
∴A(﹣1,0),B(3,0),∴OA=1,OB=3,∴OC=OB=3,∴﹣3a=3,∴a=﹣1,
∴y=﹣x2+2x+3.
(2)如图1中,作PE⊥x轴于E,PK⊥y轴于K.
∵点P在第一象限,横坐标为t,∴P(t,﹣t2+2t+3),
∵∠PKO=∠COB=∠PEO=90°,∴四边形KPEO是矩形,∴PK=OE=t,PE=OK,
∴PE=﹣t2+2t+3,AE=t+1,
∵∠PAE=∠DAO,∴tan∠PAE=tan∠DAO,∴,∴,
∴OD=3﹣t,∴CD=3﹣OD=t,
∴S=PKCD=t2.
(3)设PH交y轴于点N.
∵∠PKO=∠PKM=∠HON=90°,∴PK∥x轴,∴∠1=∠PHB,
∵∠MPH=2∠PHB,∴MPH=2∠1,即∠1=∠2,
∵∠PKM=∠PKN,PK=PK,∴△PKM≌△PKN,∴PM=PN,MK=NK,
∵PH=2PM,∴PN=HN,
∵∠HON=∠PKN,∠1=∠BHP,∴△HON≌△PKN,∴PK=HO,KN=ON,
∵AF⊥PB,∴∠AFB=90°,∴∠3+∠4=90°,
∵∠PEB=90°,∴∠4+∠5=90°,∴∠3=∠5,∴tan∠3=tan∠5,
∴,∵BE=OB﹣OE=3﹣t,∴,∴GE=1,
∴OH=2EG=2,∴PK=2,PE=3,∴OK=3=OC,∴点K与点C重合,∴KN=,
∴OM=3KN=,即m=.
科目:初中数学 来源: 题型:
【题目】下列说法正确的有( )
①最大的负整数是-1; ②数轴上表示-3和3的点到原点的距离相等;③1. 32×104是精确到百分位; ④a+6一定比a大; ⑤(-2)4与一24结果相等.
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列代数式变形中,是因式分解的是( )
A.3ab(b﹣2)=3ab2﹣6ab
B.4x2﹣12x+3=4x(x﹣3)+3
C.3x﹣6y+6=3(x﹣2y)
D.﹣4x2+4x﹣1=﹣(2x﹣1)2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购进A型2台、B型3台需54万元,购买A型4台、B型2台需68万元.
(1)求出A型、B型污水处理设备的单价;
(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1 565吨,请你为该企业设计一种最省钱的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0.其中错误的是( )
A.①②③B.①②④C.②③④D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车同时从M地出发,以各自的速度匀速向N地行驶.甲车先到达N地,停留1h后按原路以原速匀速返回,直到两车相遇,乙车的速度为50km/h.如图是两车之间的距离y(km)与乙车行驶时间x(h)之间的函数图象.
(1)甲车的速度是 km/h,M、N两地之间相距 km;
(2)求两车相遇时乙车行驶的时间;
(3)求线段AB所在直线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个盒子里有完全相同的三个小球,球上分别标上数字﹣1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com