精英家教网 > 初中数学 > 题目详情

【题目】如图,ABCD,且ABCDEFAD上两点,CEADBFAD.若CEaBFbEFc,则AD的长为(

A. a+cB. b+cC. ab+cD. a+bc

【答案】D

【解析】

根据垂直和平行线性质,证明角相等,证明△ABF≌△CDE(AAS),得到AF=CE=a,BF=DE=b,可得AD=AF+DE-EF=a+b-c.

如图,记AB与CD的交点为G,BF与CD的交点为H,

CEAD,

BFAD,

CE∥BF,

C=BHG,

ABCD,

BGH=BFA=90

B=B,

BHG=A,

A=C,

AFB=CED=90

AB=CD,

△ABF≌△CDE(AAS),

AF=CE=a,

BF=DE=b,

AD=AF+DE-EF=a+b-c.

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABDC,ADBC,BE=DF,则图中全等的三角形有( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】⊙O是△ABC的外接圆,AB是直径,过 的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.
(1)如图1,求证:AG=CP;

(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;

(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2 ,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABF≌△CDE.

(1)若∠B=30°,∠DCF=40°,求∠EFC的度数;

(2)若BD=10,EF=2,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人沿一条直路行走,此人离出发地的距离千米与行走时间分钟的函数关系如图所示,请根据图象提供的信息回答下列问题:

此人离开出发地最远距离是______ 千米;

此人在这次行走过程中,停留所用的时间为______ 分钟;

由图中线段OA可知,此人在这段时间内行走的速度是每小时______ 千米;

此人在120分钟内共走了______ 千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m,求这块草坪的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④SAOE:SBCM=2:3.其中正确结论的个数是(  )
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCBECF分别是ACAB两边上的高BE上截取BD=ACCF的延长线上截取CG=AB连接ADAG.试猜想线段ADAG的数量及位置关系并证明你的猜想.

查看答案和解析>>

同步练习册答案