精英家教网 > 初中数学 > 题目详情
如图,△ABC中,点D在AB上,E是AC延长线上一点,BD=CE,DE交BC于点F,DF=EF,DP∥AE交BC于点P,求证:AB=AC.
分析:先证明△DFP≌△EFC,得出DP=CE=BD,从而利用等腰三角形的性质得出∠DBP=∠DPB,利用平行线的性质再得出∠DPC=∠ACB,从而可判断出AB=AC.
解答:证明:∵DP∥AE,
∴∠FDP=∠FEC,
在△DFP和△EFC中,
DF=EF
∠DFP=∠EFC
∠PDF=∠CEF

故可得△DFP≌△EFC,
故可得出DP=EC,
又∵BD=CE,
∴DB=DP,
∴∠DBP=∠DPB=∠ACB,
∴AB=AC.
点评:此题考查了全等三角形的判定和性质,解答本题的关键是通过全等的证明得出DP=EC,从而利用等腰三角形的性质判断结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,△ABC中,点D在AC上,CD=2AD,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.已给的图形中存在哪几对相似三角形?请选择一对进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D、E分别为AB、AC的中点,连接DE,线段BE、CD相交于点O,若OD=2,求OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D为BC上一点,且AB=AC=CD,则图中∠1和∠2的关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D为AB边上的一点,点F为BC延长线上一点,DF交AC于点E.下列结论中不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D在BC上,点E在AB上,BD=BE,下列四个条件中,不能使△ADB≌△CEB的条件是(  )

查看答案和解析>>

同步练习册答案