【题目】如图,两个形状、大小完全相同的含有30゜、60゜的三角板如图①放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.
(1)直接写出∠DPC的度数.
(2)若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定角度(如图②),若PF平分∠APD,PE平分∠CPD,求∠EPF的度数;
(3)如图③,在图①基础上,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3゜/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2゜/秒,(当PC转到与PM重合时,两三角板都停止转动),在旋转过程中,当2∠CPD=3∠BPM,求旋转的时间是多少.
【答案】(1)90゜;(2)30゜(3)22.5秒.
【解析】
试题分析:(1)利用含有30゜、60゜的三角板得出∠DPC=180°﹣∠CPA﹣∠DPB,进而求出即可;
(2)设∠CPE=∠DPE=x,∠CPF=y,则∠APF=∠DPF=2x+y,进而利用∠CPA=60゜求出即可;
(3)设旋转时间为t秒,则∠BPM=2t°,∠CPD=90°﹣t°,得到2(90﹣t)=3×2t,即可解答.
解:(1)∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,
∴∠DPC=180゜﹣30゜﹣60゜=90゜;
(2)设∠CPE=∠DPE=x,∠CPF=y,
则∠APF=∠DPF=2x+y,
∵∠CPA=60゜,
∴y+2x+y=60゜,
∴x+y=30゜
∴∠EPF=x+y=30゜
(3)设旋转时间为t秒,则有:
∠BPM=2t°,∠CPD=180°﹣30°﹣60°﹣3t°+2t°=90°﹣t°
∴2(90﹣t)=3×2t
∴t=22.5 即当2∠CPD=3∠BPM,旋转的时间为22.5秒.
科目:初中数学 来源: 题型:
【题目】如图是甲、乙两公司近年销售收入情况的折线统计图,根据统计图得出下列结论,其中正确的是( )
A.甲公司近年的销售收入增长速度比乙公司快
B.乙公司近年的销售收入增长速度比甲公司快
C.甲、乙两公司近年的销售收入增长速度一样快
D.不能确定甲、乙两公司近年销售收入增长速度的快慢
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠A>∠B.
(1)用直尺和圆规作AB的垂直平分线,交AB与D,交BC于E;(不写作法,保留作图痕迹)
(2)在(1)的条件下,若CE=DE,求∠A,∠B的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下列各组线段长为边,能组成三角形的是( )
A. 1 cm,2 cm,4 cm B. 8 cm,6 cm,4 cm
C. 12 cm,5 cm,6 cm D. 2 cm,3 cm ,5 cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据下面给出的数轴,解答下面的问题:
(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.
(2)请问A,B两点之间的距离是多少?
(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com