【题目】如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.
(1)若∠DBC=25°,求∠ADC′的度数;
(2)若AB=4,AD=8,求△BDE的面积.
【答案】(1) 40° (2)10
【解析】试题分析:(1)求出∠ADB,求出∠BDC ,根据折叠求出∠C′DB,代入∠ADC′=∠BDC′-∠ADB即可;
(2)先证BE=DE,然后设DE=x,则BE=x,AE=8-x,在Rt△ABE中,由勾股定理求出x的值,再由三角形的面积公式求出面积的值.
试题解析:(1)∵四边形ABCD是长方形,
∴AD∥BC,∠ADC=∠C=90°,
∵AD∥BC,
∴∠BDA=∠DBC=25°,
∴∠BDC=90°-25°=65°,
∵沿BD折叠C和C′重合,
∴∠C′DB=∠CDB=65°,
∴∠ADC′=∠BDC′-∠BDA=65°-25°=40°;
(2)由折叠可知,∠CBD=∠EBD,
∵AD∥BC,
∴∠CBD=∠EDB,
∴∠EBD=∠EDB,
∴BE=DE,
设DE=x,则BE=x,AE=8-x,
在Rt△ABE中,由勾股定理得:AB2+AE2=BE2即42+(8-x)2=x2,
解得:x=5,
所以S△BDE=DE×AB=×5×4=10.
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】判断下列线段是否成比例,若是,请写出比例式.
(1)a=3 m,b=5 m,c=4.5 cm,d=7.5 cm;
____________________
(2)a=7 cm,b=4 cm,c=d=2 cm;
____________________
(3)a=1.1 cm,b=2.2 cm,c=3.3 cm,d=5.5 cm.
____________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,点A的坐标为(2,4),点B的坐标为(2,7) ,直线l经过A点且平行于x
轴,直线l上的动点C从A点出发以每秒4个单位的速度沿直线l运动.若在x轴上有两点D、E,
连接DB、OB,连接EC、OC,满足DB=OB,EC=OC,设点C运动时间t秒,
(1) 如图1,若动点C从A点出发向左运动,当t=1秒时,
①求线段BC的长和点E的坐标;
②求此时DE与AC的数量关系?
(2)探究:动点C在直线l运动,无论t取何值,是否都存在上述(1)②中的数量关系? 若存在,请证明;若不存在,请说明理由.
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,已知AC=3,BC=4.
(1)线段AD,CD,CD,BD是不是成比例线段?写出你的理由;
(2)在这个图形中,能否再找出其他成比例的四条线段?如果能,请至少写出两组.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示△ABC在边长为1个单位的网格中,请根据下列提示填空:
(1)为了把△ABC平移得到△A′B′C′,可以先将△ABC向 平移_______格,再向 平移_______格.
(2)求出△A’B’C’的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.
(1)求过A、B、D三点的抛物线的解析式;
(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x轴的垂线,交抛物线于点P,交线段CA于点M,连接PA、PB,设点E运动的时间为t(0<t<4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;
(3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的边OA=2,OC=6,在OC上取点D将△AOD沿AD翻折,使O点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE,BC分别交于点M,N.
(1)填空:经过A,B,D三点的抛物线的解析式是;
(2)已知点F在(1)中的抛物线的对称轴上,求点F到点B,D的距离之差的最大值;
(3)如图1,当点P在线段DA上移动时,是否存在这样的点M,使△CMN为等腰三角形?若存在,请求出M点坐标;若不存在,请说明理由;
(4)如图2,当点P在线段AB上移动时,设P点坐标为(x,﹣2),记△DBN的面积为S,请直接写出S与x之间的函数关系式,并求出S随x增大而增大时所对应的自变量x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com