精英家教网 > 初中数学 > 题目详情
2.计算与解方程:
(1)-2×(-3)+(-48)÷6; 
(2)-32+(-$\frac{5}{2}$)2×(-$\frac{4}{25}$)+|-22|+(-1)2013
(3)12°24′27″×4-30°27′8″.

分析 (1)直接利用有理数的乘除运算法则计算得出答案;
(2)直接利用有理数的乘方运算法则以及绝对值、有理数混合运算法则分别计算得出答案;
(3)直接利用度分秒的转换法则计算得出答案.

解答 解:(1)-2×(-3)+(-48)÷6
=6-8
=-2;

(2)-32+(-$\frac{5}{2}$)2×(-$\frac{4}{25}$)+|-22|+(-1)2013
=-9-1+4-1
=-7;

(3)12°24′27″×4-30°27′8″
=48°96′108″-30°27′8″
=18°69′100″
=19′10′40″.

点评 此题主要考查了有理数的混合运算法则以及度分秒的转换,正确把握运算法则是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,∠DCE=90°,CD=CE,DA⊥AC,EB⊥AC,垂足分别为点A、B.
试说明AD+AB=BE.
解:因为 DA⊥AC,EB⊥AC(已知),
所以∠A=∠EBC=90°(垂直的意义).
又因为∠A+∠D+∠ACD=180°(三角形的内角和等于180°),
得∠D+∠ACD=90°.
因为∠DCE=90° (已知),
得∠BCE+∠ACD=90°,
∴∴∠ECB=∠D,
在△ECB和△CDA中,$\left\{\begin{array}{l}{∠ECB=∠D}\\{∠EBC=∠A=90°}\\{CE=CD}\end{array}\right.$,
∴△ECB≌△CDA(AAS),
∴BC=AD,BE=AC,
∴AD+AB=AB+BC=AC=BE.(同角的余角相等).
(完成以下说理过程)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.分解因式:4a3-9a.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.化简5x2-[2xy-3($\frac{1}{3}$xy+2)+4x2].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,y=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.小明晚上六点多离家外出,时针与分针的夹角为110°,回家时发现还未到7点,且时针和分针的夹角仍为110°,请你推算小明外出了多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知x+2y=3,求$\frac{1}{4}$x2+xy+y2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,正方形AEFG和正方形ABCD是两个全等的正方形,若∠EAB=30°,求∠DFE的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,△ABC是等腰三角形,AB=AC,∠A=36°.
(1)利用尺规作∠B的角平分线BD,交AC于点D;(保留作图痕迹,不写作法)
(2)求∠BDC的度数?

查看答案和解析>>

同步练习册答案