精英家教网 > 初中数学 > 题目详情

【题目】为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:

63

66

63

61

64

61

63

65

60

63

64

63

(Ⅰ)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?
(Ⅱ)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.

【答案】解:(Ⅰ)∵ = =63, ∴s2= ×[(63﹣63)2×2+(66﹣63)2+2×(61﹣63)2+(64﹣63)2]=3;
= =63,
∴s2= ×[(63﹣63)2×3+(65﹣63)2+(60﹣63)2+(64﹣63)2]=
∵s2<s2
∴乙种小麦的株高长势比较整齐;
(Ⅱ)列表如下:

63

66

63

61

64

61

63

63、63

66、63

63、63

61、63

64、63

61、63

65

63、65

66、65

63、65

61、65

64、65

61、65

60

63、60

66、60

63、60

61、60

64、60

61、60

63

63、63

66、63

63、63

61、63

64、63

61、63

64

63、64

66、64

63、64

61、64

64、64

61、64

63

63、63

66、63

63、63

61、63

64、63

61、63

由表格可知,共有36种等可能结果,其中两株配对小麦株高恰好都等于各自平均株高的有6种,
∴所抽取的两株配对小麦株高恰好都等于各自平均株高的概率为 =
【解析】(Ⅰ)先计算出平均数,再依据方差公式即可得; (Ⅱ)列表得出所有等可能结果,由表格得出两株配对小麦株高恰好都等于各自平均株高的结果数,依据概率公式求解可得.
【考点精析】关于本题考查的列表法与树状图法,需要了解当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图:直线AB经过点A(0,3)点B( ,0),点M在y轴上,⊙M经过点A、B,交x轴于另一点C.

(1)求直线AB的解析式;
(2)求点M的坐标;
(3)点P是劣弧AC上一个动点,当P点运动时,问:线段PA,PB,PC有什么数量关系?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为5,点A的坐标为(﹣40),点By轴上,若反比例函数k0)的图象过点C,则该反比例函数的表达式为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.
根据统计表,回答问题:

(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?
(2)请简单描述月用电量与气温之间的关系;
(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,图中与∠E是同位角的有_________________,与∠D是内错角的有________________,与∠E是同旁内角的有______________________,与∠D是同旁内角的有_______________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形的顶点与坐标原点重合,其边长为2,点,点分别在轴, 轴的正半轴上.函数的图像与交于点,函数为常数, )的图像经过点,与交于点,与函数的图像在第三象服内交于点,连接.

(1)求函数的表达式,并直接写出两点的坐标;

(2)的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图甲、乙两船从港口A同时出发甲船以30海里/时的速度向北偏东35°的方向航行乙船以40海里/时的速度向另一方向航行,2小时后甲船到达C乙船到达BC,B两岛相距100海里则乙船航行的方向是南偏东多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们运用图(Ⅰ)中大正方形的面积可表示为(a+b)2也可表示为c3+4(ab),即(a+b)2=c2+4(ab)由此推导出一个重要的结论a2+b2=c2这个重要的结论就是著名的勾股定理.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称无字证明”.

(1)请你用图(Ⅱ)(2002年国际数学家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).

(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+2y)2=x2+4xy+4y2

查看答案和解析>>

同步练习册答案