精英家教网 > 初中数学 > 题目详情

【题目】(本题8分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.

(1)求此抛物线的解析式;

(2)直接写出点C和点D的坐标;

(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.

【答案】(1)y=﹣x2+2x+3;(2) C(0,3),D(1,4);(3) P(2,3)

【解析】试题分析:(1)将AB的坐标代入抛物线的解析式中,即可求出待定系数bc的值,进而可得到抛物线的对称轴方程;

2)令x=0,可得C点坐标,将函数解析式配方即得抛物线的顶点C的坐标;

3)设Pxy)(x0y0),根据题意列出方程即可求得y,即得D点坐标.

1)由点A10)和点B30)得 ,解得: 抛物线的解析式为

2)令x=0,则y=3C03),=x12+4D14);

3)设Pxy)(x0y0),SCOE=×1×3=SABP=×4y=2ySABP=4SCOE2y=4×y=3∴﹣x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2P23).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】父亲告诉小明:距离地面越高,温度越低,并给小明出示了下面的表格:

距离地面高度(千米)h

0

1

2

3

4

5

温度(℃)t

20

14

8

2

﹣4

﹣10

根据表中,父亲还给小明出了下面几个问题,请你帮助小明回答下列问题:

(1)表中自变量是   ;因变量是   当地面上(即h=0时)时,温度是   ℃.

(2)如果用h表示距离地面的高度,用t表示温度,请写出满足th关系的式子.

(3)计算出距离地面6千米的高空温度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,用一段长30米的篱笆围成一个一边靠墙(墙的长度为20米)的矩形鸡场ABCD,设BC边长为x米,鸡场的面积为y平方米.

(1)求yx的函数关系式;

(2)写出其二次项、一次项、常数项;

(3)写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.

1)如图1,矩形ABCD中,若AB=3BC=9,则称矩形ABCD  阶奇异矩形.

2)如图2,矩形ABCD长为7,宽为3,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.

3)已知矩形ABCD的一边长为20,另一边长为aa20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方直接写出a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式中,正确的是()

A.9ab-3ab=6B.3a+4b= 7abC.x2y-2 y x2= -x2yD.a4+a6=a10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AM∥CN,点B为平面内一点,AB⊥BC于B.

(1)如图1,直接写出∠A和∠C之间的数量关系________

(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;

(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形(阴影部分),且它的一条直角边等于斜边的一半,这样的图形有( ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于xy的多项式xy -5x+mxy +y-1不含二次项,则m的值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线经过O,D,C三点.

(1)求AD的长及抛物线的解析式;

(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动,设运动时间为t秒,当t为何值时,以P,Q,C为顶点的三角形与ADE相似?

(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.

查看答案和解析>>

同步练习册答案