【题目】对于任意一点 P 和线段 a.若过点 P 向线段 a 所在直线作垂线,若垂足落在线段 a 上,则称点 P 为线段a 的内垂点.在平面直角坐标系 xOy 中,已知点 A(-1,0),B(2,0 ) ,C(0,2).
(1)在点 M(1,0),N(3,2),P(-1,-3)中,是线段 AB 的内垂点的是 ;
(2)已知点 D(-3,2),E(-3,4).在图中画出区域并用阴影表示,使区域内的每个点均为 Rt△CDE三边的内垂点;
(3)已知直线 m 与 x 轴交于点 B,与 y 轴交于点 C,将直线 m 沿 y 轴平移 3 个单位长度得到直线 n . 若存在点 Q,使线段 BQ 的内垂点形成的区域恰好是直线 m 和 n 之间的区域(包括边界),直接写出点 Q 的坐标.
【答案】(1)M,P;(2)见详解;(3)(0.5,﹣1.5)或(3.5,1.5)
【解析】
(1)画图后根据定义可以判定;
(2)如图2所示;
(3)分两种情况:①n在m的下方,②n在m的上方,先确认m和n的解析式,n与x轴的交点为E,作BE的垂直平分线,与n的交点即是Q.
解:(1)如图1所示:PA⊥AB,垂足为A,过M作AB的垂线,垂足为M,都在线段AB上,
所以线段AB的内垂点的是:M,P;
故答案为:M,P;
(2)如图2所示,
(3)分两种情况:
①当n在m的下方时,如图3,
∵B(2,0),C(0,2).
设BC的解析式为:y=kx+b,则,
解得:,
∴m:y=﹣x+2,
n:y=﹣x﹣1,
∴E(﹣1,0),
取BE的中点P,过P作BE的垂线交n于Q,
∵P(0.5,0),
∴当x=0.5时,y=﹣x﹣1=﹣1.5,
∴Q(0.5,﹣1.5);
②当直线n在直线m的上方时,如图4,则n:y=﹣x+5,
同理得Q(3.5,1.5);
综上,点Q的坐标为(0.5,﹣1.5)或(3.5,1.5).
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场准备进一批两种不同型号的衣服,已知购进种型号衣服9件,种型号衣服10件,则共需1810元;若购进种型号衣服12件,种型号衣服8件,共需1880元;已知销售一件型号衣服可获利18元,销售一件型号衣服可获利30元.要使在这次销售中获利不少于699元,且型号衣服不多于28件.
(1)求型号衣服进价各是多少元?
(2)若已知购进型号衣服是型号衣服的2倍还多4件,则商店在这次进货中可有几种方案?并简述购货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系 xOy 中,点A,B的坐标分别为(-2,0),(1,0).同时将点A ,B先向左平移1个单位长度,再向上平移2个单位长度,得到点A,B的对应点依次为C,D,连接CD,AC, BD .
(1)写出点C , D 的坐标;
(2)在 y 轴上是否存在点E,连接EA ,EB,使S△EAB=S四边形ABDC?若存在,求出点E的坐标;若不存在,说明理由;
(3)点 P 是线段 AC 上的一个动点,连接 BP , DP ,当点 P 在线段 AC 上移动时(不与 A , C 重合),直接写出CDP 、ABP 与BPD 之间的等量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知ABCD为平行四边形纸片,要想用它剪成一个菱形,小刚说只要过BD中点作BD的垂线交AD、BC于E、F,沿BE、DF剪去两个角,所得的四边形BFDE为菱形.你认为小刚的方法对吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据下表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判断二次函数的解析式为( )
x | … | 0 | 1 | 2 | … | |
y | … | … |
A. y=x2﹣x﹣ B. y=x2+x﹣
C. y=﹣x2﹣x+ D. y=﹣x2+x+
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图有一座抛物线形拱桥,桥下面在正常水位是AB宽20m,水位上升3m就达到警戒线CD,这是水面宽度为10m。
(1)在如图的坐标系中求抛物线的解析式。
(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com