精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,∠C=90°,AC=6,AB=10,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为

【答案】
【解析】解:过点O作OE⊥AB于点E,OF⊥BC于点F. ∵AB、BC是⊙O的切线,
∴点E、F是切点,
∴OE、OF是⊙O的半径;
∴OE=OF;
在△ABC中,∠C=90°,AC=6,AB=10,
∴由勾股定理,得BC=8;
又∵D是BC边的中点,
∴SABD=SACD
又∵SABD=SABO+SBOD
ABOE+ BDOF= CDAC,即10×OE+4×OE=4×6,
解得OE=
∴⊙O的半径是
故答案为

过点O作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(SABO+SBOD=SABD=SACD)列出关于圆的半径的等式,求得圆的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:

污水处理器型号

A型

B型

处理污水能力(吨/月)

240

180

已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.

(1)求每台A型、B型污水处理器的价格;

(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,第一个正方形的顶点A1(﹣1,1),B1(1,1);第二个正方形的顶点A2(﹣3,3),B2(3,3);第三个正方形的顶点A3(﹣6,6),B3(6,6)按顺序取点A1,B2,A3,B4,A5,B6,则第12个点应取点B12,其坐标为(  )

A. (12,12) B. (78,78) C. (66,66) D. (55,55)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,∠A=60°,过点C作⊙O的切线,交射线BO于点E.

(1)求∠BCE的度数;
(2)若⊙O半径为3,求BE长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AEBD于E,CFBD于F,连结AF,CE.求证:四边形AECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,OA=OB,函数y=﹣ 的图象与线段AB交于M点,且AM=BM.
(1)求点M的坐标;
(2)求直线AB的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为121,,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入 分钟的水量后,甲与乙的水位高度之差是05cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有一个种植总面积为540 m2的长方形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14(垄数为正整数),它们的占地面积、产量、利润分别如下:

(1)若设草莓共种植了x垄,请说明共有几种种植方案,分别是哪几种;

(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平分平分,则 ______

查看答案和解析>>

同步练习册答案