精英家教网 > 初中数学 > 题目详情

【题目】RtABC中,∠A = 3C = 90,AB = 3,点Q在边AB上且BQ =,过QQFBCAC于点F,点P在线段QF上,过PPDACAB于点D,PEABBC于点E,当P到△ABC的三边的距离之和为3时,PD + PE + PF =_________.

【答案】

【解析】

过点PAC于点M, BC于点N, PEAB,QFBC,四边形BEPQ是平行四边形,根据平行四边形的性质得:A = 3C = 90根据平行线的性质有

根据列出方程解得: 即可求出PD + PE + PF的值.

如图所示:过点PAC于点M, BC于点N,

PEAB,QFBC,四边形BEPQ是平行四边形,

根据平行四边形的性质得:

A = 3C = 90

根据平行线的性质有

解得:

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某班10名学生的校服尺寸与对应人数如表所示:

尺寸(cm)

160

165

170

175

180

学生人数(人)

1

3

2

2

2

则这10名学生校服尺寸的众数和中位数分别为( )
A.165cm,165cm
B.165cm,170cm
C.170cm,165cm
D.170cm,170cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB∥CD,AD∥BC, AB=3,BC=4,将矩形纸片沿BD折叠,使点A落在点E处,设DE与BC相交于点F.

(1)判断△BDF的形状,并说明理由;

(2)求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,BG=,则CEF的周长为(  )

A. 8 B. 9.5 C. 10 D. 11.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B、C是反比例函数y= (k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有( )

A.4条
B.3条
C.2条
D.1条

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【阅读】
如图1,在平面直角坐标系xOy中,已知点A(a,0)(a>0),B(2,3),C(0,3).过原点O作直线l,使它经过第一、三象限,直线l与y轴的正半轴所成角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].

(1)【理解】
若点D与点A重合,则这个操作过程为FZ[];
(2)【尝试】
若点D恰为AB的中点(如图2),求θ;

(3)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形0ABC的边AB上,求出a的值;若点E落在四边形0ABC的外部,直接写出a的取值范围;
(4)【探究】
经过FZ[θ,a]操作后,作直线CD交x轴于点G,交直线AB于点H,使得△ODG与△GAH是一对相似的等腰三角形,直接写出FZ[θ,a].

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长为1,四边形ABCD的顶点都在格点上.

(1)在方格纸上建立平面直角坐标系,使四边形ABCD的顶点AC的坐标分别为(5,﹣1)(3,﹣3),并写出点D的坐标;

(2)(1)中所建坐标系中,画出四边形ABCD关于x轴的对称图形A1B1C1D1,并写出点B的对应点B1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点D与点A(8,0),B(0,6),C(a,﹣a)是一平行四边形的四个顶点,则CD长的最小值为.

查看答案和解析>>

同步练习册答案