精英家教网 > 初中数学 > 题目详情

【题目】任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH,HF,FG,GE,则下列结论中,不一定正确的是(  )
A.△EGH为等腰三角形
B.△EGF为等边三角形
C.四边形EGFH为菱形
D.△EHF为等腰三角形

【答案】B
【解析】解:A、正确.∵EG=EH, ∴△EGH是等边三角形.
B、错误.∵EG=GF,
∴△EFG是等腰三角形,
若△EFG是等边三角形,则EF=EG,显然不可能.
C、正确.∵EG=EH=HF=FG,
∴四边形EHFG是菱形.
D、正确.∵EH=FH,
∴△EFH是等边三角形.
故选B.

根据等腰三角形的定义、菱形的定义、等边三角形的定义一一判断即可.本题考查线段的垂直平分线的性质、作图﹣基本作图、等腰三角形的定义等知识,解题的关键是灵活一一这些知识解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数 (k≠0)的图象上.
(1)求a的值;
(2)直接写出点P′的坐标;
(3)求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积. 某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°
(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)
(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD是⊙O的弦,AB是直径,且CD∥AB,连接AC、AD、OD,其中AC=CD,过点B的切线交CD的延长线于E.
(1)求证:DA平分∠CDO;
(2)若AB=12,求图中阴影部分的周长之和(参考数据:π=3.1, =1.4, =1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣ ,y2)、点C( ,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2 , 且x1<x2 , 则x1<﹣1<5<x2 . 其中正确的结论有(  )
A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是⊙O上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠DAC.
(1)猜想直线MN与⊙O的位置关系,并说明理由;
(2)若CD=6,cos∠ACD= ,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知整数a1 , a2 , a3 , a4 , …满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2012的值为( )
A.﹣1005
B.﹣1006
C.﹣1007
D.﹣2012

查看答案和解析>>

同步练习册答案