精英家教网 > 初中数学 > 题目详情

【题目】如图,RtABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CD翻折,使点A落在AB上的点E处;再将边BC沿CF翻折,使点B落在CE的延长线上的点B处,两条折痕与斜边AB分别交于点DF,则线段BF的长为( )

A. B. C. D.

【答案】B

【解析】首先根据折叠可得CD=AC=3,BC=4,∠ACE=∠DCE,∠BCF=∠B/CF,CE⊥AB,然后求得△BCF是等腰直角三角形,进而求得∠B/GD=90°,CE-EF=,ED=AE=

从而求得B/D=1,DF=,在Rt△B/DF中,由勾股定理即可求得B/F的长.

解:根据首先根据折叠可得CD=AC=3,B/C=B4,∠ACE=∠DCE,∠BCF=∠B/CF,CE⊥AB,

∴BD=4-3=1,∠DCE+∠B/CF=∠ACE+∠BCF,

∴∠ACB=90°,∴∠ECF=45°,

∴△ECF是等腰直角三角形,

∴EF=CE,∠EFC=45°,

∴∠BFC=∠B/FC=135°,

∴∠B/FD=90°,

∵S△ABC=AC×BC=AB×CE,

∴AC×BC=AB×CE,

∵根据勾股定理求得AB=5,

∴CE=,∴EF=,ED=AE==

∴DE=EF-ED=

∴B/F==.

故答案为:

“点睛”此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的角是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义a*b=ab+a+b,若3*x=27,则x的值是(

A. 3 B. 4 C. 6 D. 9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC

(1)求证:BE是⊙O的切线;

(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BGBA=48,FG=,DF=2BF,求AH的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段AB=12,点D、E是线段AB的三等分点,求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016四川省凉山州)阅读下列材料并回答问题:

材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为

古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式

我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:

下面我们对公式②进行变形:

这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式

问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F

(1)求△ABC的面积;

(2)求⊙O的半径

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013年全市生产总值(GDP)达5 613亿元.该数据用科学记数法表示为(

A.5613×1011B.5613×1012

C.5613×1010D.0561 3×1012

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(  )
A.平分弦的直径垂直于弦
B.相等的圆周角所对的弧相等
C.三个点确定一个圆
D.半圆或直径所对的圆周角是直角

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.

(1)求证:四边形CDOF是矩形;

(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.

查看答案和解析>>

同步练习册答案