精英家教网 > 初中数学 > 题目详情
如图,已知A、B两点的坐标分别为(-4,0)、(0,4),⊙C的圆心坐标为C(2,0),半径为2.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最大值是
2
2
+8
2
2
+8
分析:由于OA的长为定值,若△ABE的面积最大,则BE的长最长,此时AD与⊙相切且位于x轴的下方;可连接CD,在Rt△ADC中,由勾股定理求得AD的长,即可得到△ADC的面积;易证得△AEO∽△ACD,可以求出OE的长,进而可得出△AOB和△AOE的面积和,由此得解.
解答:解:若△ABE的面积最大,则AD与⊙C相切,连接CD,则CD⊥AD;
∴△AEO∽△ACD
AO
AD
=
OE
DC

∵A(-4,0)、B(0,4)、C(2,0),
∴AC=6,AO=4,CD=2,
∴AD=4
2

4
4
2
=
OE
2

∴OE=
2

∴△ABE的最大面积为:
1
2
×4×
2
+
1
2
×4×4=2
2
+8,
故答案为:2
2
+8
点评:本题考查了直线与圆的位置关系,坐标与图形的性质,三角形的面积公式的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知A、C两点在双曲线y=
1x
上,点C的横坐标比点A的横坐标多2,AB⊥x轴,CD⊥x轴,CE⊥AB,垂足分别是B、D、E.
(1)当A的横坐标是1时,求△AEC的面积S1
(2)当A的横坐标是n时,求△AEC的面积Sn
(3)当A的横坐标分别是1,2,…,10时,△AEC的面积相应的是S1,S2,…,S10,求S1+S2+…+S10的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•福田区二模)如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是
11
3
11
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知A、B两点的坐标分别为(2
3
,0)、(0,2),P是△AOB外接圆上的一点,且∠AOP=45°,则点P的坐标为
3
+1,
3
+1)或(
3
-1,1-
3
3
+1,
3
+1)或(
3
-1,1-
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知M、N两点在正方形ABCD的对角线BD上移动,∠MCN为定角,连接AM、AN,并延长分别交BC、CD于E、F两点,则∠CME与∠CNF在M、N两点移动过程,它们的和是否有变化?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知E、F两点在线段BC上,AB=AC,BF=CE,你能判断线段AF和AE的大小关系吗?说明理由.

查看答案和解析>>

同步练习册答案