分析 (1)根据等腰三角形性质和已知求出AD⊥BC,BD=CD=5,求出∠ADB=∠CEB=90°,根据相似三角形的判定得出即可;
(2)根据勾股定理求出AD,根据相似得出比例式,代入求出即可.
解答 (1)证明:∵AB=AC=13,BC=10,D是BC的中点,
∴AD⊥BC,BD=CD=5,
∵CE⊥AB,
∴∠ADB=∠CEB=90°,
∵∠B=∠B,
∴△ABD∽△CBE;
(2)解:由勾股定理得:AD=$\sqrt{1{3}^{2}-{5}^{2}}$=12,
∵△ABD∽△CBE,
∴$\frac{AB}{BC}$=$\frac{AD}{CE}$,
∴$\frac{13}{10}$=$\frac{12}{CE}$,
∴CE=$\frac{120}{13}$.
点评 本题考查了等腰三角形的性质,勾股定理,相似三角形的性质和判定的应用,能根据相似三角形的判定得出△ABD∽△CBE是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{5}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com