精英家教网 > 初中数学 > 题目详情

如图①,在菱形ABCD和菱形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG,PC.若数学公式=数学公式=数学公式
(1)请写出线段PG与PC所满足的关系;并加以证明.
(2)若将图①中的菱形BEFG饶点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变,如图②.那么你在(1)中得到的结论是否发生变化?若没变化,直接写出结论,若有变化,写出变化的结果.
(3)若将图①中的菱形BEFG饶点B顺时针旋转任意角度,原问题中的其他条件不变,请猜想(1)中的结论有没有变化?

解:(1)延长GP交DC于H,
∵DC∥GF,
∴∠DHP=∠PGF,∠DPH=∠GPF,
∵DP=PF,
∴△DHP≌△PGF,
∴HD=GF,
∵四边形ABCD和四边形GFEB是菱形,
∴DC=CB,FG=GB,
∴DH=GB,
∴DC-DH=CB-GB,
∴CH=CG,
∴△CHG就是等腰三角形且CP是底边上的中线,根据等腰三角形三线合一的特点,
即可得出CP⊥PG;
∴线段PG与PC的位置关系是PG⊥PC;

(2)线段PG与PC的位置关系是PG⊥PC;
证明:如图②,延长GP到H,使PH=PG,
连接CH,CG,DH,
∵P是线段DF的中点,
∴FP=DP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GF=HD,∠GFP=∠HDP,
==
∴∠ADC=∠ABC=60°,∠GBF=60°,
∵四边形ABCD是菱形,
∴CD=CB,∠ADC=∠ABC=60°,点A、B、F又在一条直线上,
∴∠FBC=120°,
∴∠HDC=∠CBG=60°,
∵四边形BEFG是菱形,
∴GF=GB,
∴HD=GB,
即在△HDC与△GBC中,

∴△HDC≌△GBC(SAS),
∴CH=CG,∠DCH=∠BCG,
∴∠DCH+∠HCB=∠BCG+∠HCB=120°,
即∠HCG=120°
∵CH=CG,PH=PG,
∴PG⊥PC.

(3)将图①中的菱形BEFG饶点B顺时针旋转任意角度,
(1)中的结论没有变化,PG⊥PC.
分析:(1)可通过构建全等三角形求解.延长GP交DC于H,可证△DHP和△PGF全等,已知的有DC∥GF,根据平行线间的内错角相等可得出两三角形中两组对应的角相等,又有DP=PF,因此构成了全等三角形判定条件中的(AAS),得出两三角形全等,于是△CHG就是等腰直角三角形且CP是底边上的中线,根据等腰三角形三线合一的特点,即可得出CP⊥PG;
(2)方法同(1),只不过△CHG是个等腰三角形,得出顶角为120°,可根据三角函数来得出PG、CP的比例关系;
(3)经过(1)(2)的解题过程,我们要构建出以CP为底边中线的等腰三角形,那么可延长GP到H,使PH=PG,连接CH、DH,那么根据前两问的解题过程,我们要求的是三角形CHG是个等腰三角形,关键是证△GFP≌△HDP,根据已知得出△HDC≌△GBC,然后得出即可.
点评:此题主要考查了正方形,菱形的性质,以及全等三角形的判定等知识点,根据已知和所求的条件正确的构建出相关的全等三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及
PG
PC
的值.
小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:
(1)写出上面问题中线段PG与PC的位置关系及
PG
PC
的值;
(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明;
(3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,精英家教网原问题中的其他条件不变,请你直接写出
PG
PC
的值(用含α的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB,AC上,且G,F分别是AB,AC的中点.
精英家教网
(1)求等腰梯形DEFG的面积;
(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图2).
探究1:在运动过程中,四边形BDG′G能否是菱形?若能,请求出此时x的值;若不能,请说明理由;
探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,A,E,B,D在同一直线上,在△ABC与△DEF中,AB=DE,AC=DF,AC∥DF.求证:∠C=∠F.
(2)如图2,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.求线段BE的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•福州)如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB=
8-2t
8-2t
,PD=
4
3
t
4
3
t

(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•新乡模拟)阅读下列材料:问题:如图1,在菱形ABCD和菱形BEFG中,∠ABC=∠BEF=60°,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC,探究PG与PC的位置关系
小颖同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.
请你参考小颖同学的思路,探究并解决下列问题:
(1)请你写出上面问题中线段PG与PC的位置关系;
(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题申的其他条件不变(如图2).你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明,

查看答案和解析>>

同步练习册答案