分析 根据切线长定理,得到D是BC的中点,从而得到A,O,D三点共线.根据等腰三角形的三线合一得到直角三角形ACD.根据切线长定理得到CD=CE,则根据锐角三角函数即可求得AC的长.
解答 解:连接AO、OD;
∵O是△ABC的内心,
∴OA平分∠BAC,
∵⊙O是△ABC的内切圆,D是切点,
∴OD⊥BC;
又∵AC=AB,
∴A、O、D三点共线,即AD⊥BC,
∵CD、CE是⊙O的切线,
∴CD=CE=2$\sqrt{3}$,
∵∠C=30°,CE=2$\sqrt{3}$,
∴CA=$\frac{CD}{cos∠C}$=4,
故答案为:4.
点评 本题运用了切线长定理和等腰三角形的三线合一的性质,关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x3•x5=x15 | B. | (x2)5=x7 | C. | $\root{3}{27}$=3 | D. | $\frac{-a+b}{a+b}$=-1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
天数 | 1≤x≤5 | 6≤x≤10 |
销售价格y | $\frac{1}{2}$x+24 | 30 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com