精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是(  )

A.88°   B.92°    C.106°  D.136°


D【考点】圆内接四边形的性质;圆周角定理.

【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.

【解答】解:∵∠BOD=88°,

∴∠BAD=88°÷2=44°,

∵∠BAD+∠BCD=180°,

∴∠BCD=180°﹣44°=136°,

即∠BCD的度数是136°.

故选:D.

【点评】(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).

(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


有下列各数:,3.14,,﹣,其中无理数有(  )

A.4个  B.3个   C.2个  D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:


在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为1﹕2,把△EFO缩小,则点E的对应点E′的坐标是      

查看答案和解析>>

科目:初中数学 来源: 题型:


定义新运算:对于任意实数a,b(其中a≠0),都有a⊗b=,等式右边是通常的加法、减法及除法运算,比如:2⊗1==0

(1)求5⊗4的值;

(2)若x⊗2=1(其中x≠0),求x的值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中,过点A与x轴平行的直线交抛物线y=于点B、C,线段BC的长度为6,抛物线y=﹣2x2+b与y轴交于点A,则b=(  )

A.1       B.4.5    C.3       D.6

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为(  )

A.40°   B.35°    C.50°   D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:


 

为提高运输效率、保障高峰时段人们的顺利出行,地铁公司在保证安全运行的前提下,缩短了发车间隔,从而提高了运送乘客的数量.缩短发车间隔后比缩短发车间隔前平均每分钟多运送乘客50人,使得缩短发车间隔后运送14400人的时间与缩短发车间隔前运送12800人的时间相同,那么缩短发车间隔前平均每分钟运送乘客多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:


若分式的值为零,则x的取值为(  )

A.x≠3   B.x≠﹣3       C.x=3   D.x=﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:


.数学活动课上,老师提出这样一个问题:如果AB=BC,∠ABC=60°,∠APC=30°,连接PB,那么PA、PB、PC之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:

小蕾:我将图形进行了特殊化,让点P在BA延长线上(如图1),得到了一个猜想:PA2+PC2=PB2

小东:我假设点P在∠ABC的内部,根据题目条件,这个图形具有“共端点等线段”的特点,可以利用旋转解决问题,旋转△PAB后得到△P′CB,并且可推出△PBP′,△PCP′分别是等边三角形、直角三角形,就能得到猜想和证明方法.

这时老师对同学们说,请大家完成以下问题:

(1)如图2,点P在∠ABC的内部,

①PA=4,PC=,PB=      

②用等式表示PA、PB、PC之间的数量关系,并证明.

(2)对于点P的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.

查看答案和解析>>

同步练习册答案