精英家教网 > 初中数学 > 题目详情
3.如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原.当x=0,折痕EF的长为3,当点E与点A重合时,折痕EF的长为$\sqrt{2}$.

分析 当x=0时,折痕EF的长正好等于矩形的长为3,当点E与点A重合时,画出符合要求的图形,得出∠DEF=∠FEP=45°,利用勾股定理得出答案.

解答 解:∵纸片折叠,使点D与点P重合,得折痕EF,
当AP=x=0时,点D与点P重合,
即为A,D重合,B,C重合,
那么EF=AB=CD=3;
当点E与点A重合时,如图所示:
∵点D与点P重合是已知条件,
∴∠DEF=∠FEP=45°,
∴∠DFE=45°,
即:ED=DF=1,
利用勾股定理得出EF=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$
∴折痕EF的长为$\sqrt{2}$;
故答案为:3,$\sqrt{2}$;

点评 此题主要考查了矩形的性质、折叠的性质、勾股定理的应用;根据已知条件得出对应线段与对应角之间的关系是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.相反数与绝对值相等的数是(  )
A.正数B.负数C.非负数D.非正数

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在平面直角坐标系中,O为坐标原点,抛物线y=-x2+kx+4与y轴交于A,与x轴的负半轴交于B,且△ABO的面积是8.
(1)求点B的坐标和此二次函数的解析式;
(2)当y≤4时,直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.(1)|$-\frac{2}{3}$|$÷|+\frac{3}{2}|$=$\frac{4}{9}$;
(2)-(-$\frac{1}{2}$)4=-$\frac{1}{16}$;
(3)(-1)1999-(-1)2000=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,等边三角形ABC的边长为4,点E是边BC上一动点(不与点B、C重合),以BE为边在BC的下方作等边三角形BDE,连接AE、CD.
(1)在运动的过程中,AE与CD有何数量关系?请说明理由.
(2)当BE=2时,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,已知△ABC≌△DBE,如果∠CBD=96°,∠CBE=28°,那么∠ABC=68°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.在-4,0,π,1.010010001…,$\frac{22}{7}$,1.$\stackrel{•}{3}$这些数中,无理数有2个.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.以下列各组长度的线段为边,能构成三角形的是(  )
A.3,4,5B.7,3,4C.5,6,12D.1,2,3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.45元收费,如果超过140度,超过部分按每度0.60元收费.
(1)若该住户五月份的用电量是100度,则他五月份应交多少电费?
(2)若该住户六月份的用电量是200度,则他六月份应交多少电费?
(3)若某住户七月份的用电量是a度(a>140),求这个用户七月份应交多少电费?(结果用含a的式子表示)

查看答案和解析>>

同步练习册答案