【题目】已知等式.
若等式中,已知是非零常量,请写出因变量与自变量的函数解析式;当时,求的最大值和最小值及对应的的取值.
若等式中,是非零常量,请写出因变量与自变量的函数解析式,并判断在什么范围内取值时,随的增大而增大.
【答案】(1)最大值.最小值.(2)或
【解析】
对等式进行变形即可写出因变量与自变量的函数解析式;求出对称轴,根据二次函数的性质,分和两种情况进行讨论即可.
根据等式的性质进行变形即可写出因变量与自变量的函数解析式,根据一次函数的性质进行求解即可.
解:由条件变形得:
,所以函数是关于的二次函数,且对称轴为轴.
时,函数图象开口向上,且在时,随的增大而增大,时,随的增大而减小.
又
时,函数取得最小值.
时,函数取得最大值.
时,函数开口向下,且在时,随的增大而减小,时,随的增大而增大.
又
时,函数取得最大值.
时,函数取得最小值.
若是常量,是自变量,则原式可变形为:
,
当时,函数是关于的一次函数
所以当时,随的增大而增大.
解得或
科目:初中数学 来源: 题型:
【题目】为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩进行统计,并按照成绩从低到高分成A,B,C,D,E五个小组,绘制统计图如下(未完成),解答下列问题:
(1)样本容量为 ,频数分布直方图中a= ;
(2)扇形统计图中D小组所对应的扇形圆心角为n°,求n的值并补全频数分布直方图;
(3)若成绩在80分以上(不含80分)为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小巷左右两侧是竖直的墙,一架梯子AC斜靠在右墙,测得梯子顶端距离地面AB=2米,梯子与地面夹角α的正弦值sinα=0.8.梯子底端位置不动,将梯子斜靠在左墙时,顶端距离地面2.4米,则小巷的宽度为( )
A. 0.7米B. 1.5米
C. 2.2米D. 2.4米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A1,A2,A3,… 和B1,B2,B3,… 分别在直线和x轴上.△OA1 B1,△B1 A2 B2,△B2 A3 B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2019的纵坐标是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是的外接圆,为直径,的平分线交于点,过点作的平行线分别交,的延长线于点,.
(1)求证:是的切线;
(2)设,,试用含,的代数式表示线段的长;
(3)若,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论;
(3)在(2)的条件下,要使四边形ADCF为正方形,在△ABC中应添加什么条件,请直接把补充条件写在横线上 (不需说明理由).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店经营一种文化衫,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件文化衫售价不能高于40元.设每件文化衫的销售单价上涨了元时(为正整数),月销售利润为元.
(1)求与的函数关系式并直接写出自变量的取值范围.
(2)每件文化衫的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)阅读理解:利用旋转变换解决数学问题是一种常用的方法。如图,点是等边三角形内一点,,求的度数。为利用已知条件,不妨把绕点顺时针旋转60°得,连接,则的长为_______;在中,易证,且的度数为_____,综上可得的度数为__ ;
(2)类比迁移:如图,点是等腰内的一点,。求的度数;
(3)拓展应用:如图,在四边形中,,请直接写出的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将矩形ABCD绕点B顺时针旋转得到矩形A1BC1D1,点A、C、D的对应点分别为A1、C1、D1
(1)当点A1落在AC上时
①如图1,若∠CAB=60°,求证:四边形ABD1C为平行四边形;
②如图2,AD1交CB于点O.若∠CAB≠60°,求证:DO=AO;
(2)如图3,当A1D1过点C时.若BC=5,CD=3,直接写出A1A的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com