精英家教网 > 初中数学 > 题目详情
6.先化简,再求值:(2x+y)2+(x-y)(x+y)-5x(x-y),其中x=$\sqrt{2}$+1,y=$\sqrt{2}$-1.

分析 首先化简(2x+y)2+(x-y)(x+y)-5x(x-y),然后把x=$\sqrt{2}$+1,y=$\sqrt{2}$-1代入化简后的算式,求出算式的值是多少即可.

解答 解:(2x+y)2+(x-y)(x+y)-5x(x-y)
=4x2+4xy+y2+x2-y2-5x2+5xy
=9xy
当x=$\sqrt{2}$+1,y=$\sqrt{2}$-1时,
原式=9($\sqrt{2}$+1)($\sqrt{2}$-1)
=9×(2-1)
=9×1
=9

点评 此题主要考查了整式的混合运算-化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲   78  86  74  81  75  76  87  70  75  90  75  79  81  70  74  80  86  69  83  77
乙   93  73  88  81  72  81  94  83  77  83  80  81  70  81  73  78  82  80  70  40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
成绩x
人数
部门
40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100
0011171
100710
(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)
分析数据
两组样本数据的平均数、中位数、众数如下表所示:
部门平均数中位数众数
78.377.575
7880.581
得出结论:a.估计乙部门生产技能优秀的员工人数为240;b.可以推断出甲或乙部门员工的生产技能水平较高,理由为①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;
②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.
或①乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;
②乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高..(至少从两个不同的角度说明推断的合理性)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列各数中比1大的数是(  )
A.2B.0C.-1D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.计算:23-$\sqrt{4}$=6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.图中立体图形的主视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是(  )m.
A.20$\sqrt{3}$B.30C.30$\sqrt{3}$D.40

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,点C是AB的中点,AD=CE,CD=BE.
(1)求证:△ACD≌△CBE;
(2)连接DE,求证:四边形CBED是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,AB∥CD,AD=CD,∠2=40°,则∠1的度数是(  )
A.80°B.75°C.70°D.65°

查看答案和解析>>

同步练习册答案