20£®ÔÚÈçͼËùʾµÄÕý·½ÐÎÍø¸ñÖУ¬¡÷ABCµÄ¶¥µã¾ùÔÚ¸ñµãÉÏ£¬½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵºó£¬µãAµÄ×ø±êΪ£¨1£¬-1£©£®
£¨1£©»­³ö¡÷ABCÏò×óÆ½ÒÆ2¸öµ¥Î»£¬È»ºóÔÙÏòÉÏÆ½ÒÆ4¸öµ¥Î»ºóµÄ¡÷A1B1C1£¬²¢Ð´³öµãA1µÄ×ø±ê£»
£¨2£©»­³ö¡÷A1B1C1ÈÆµãM£¨-1£¬1£©Ðýת180¡ãºóµÃµ½µÄ¡÷A2B2C2£¬²¢Çó³öÒÔA1¡¢C2¡¢A2¡¢C1Ϊ¶¥µãµÄËıßÐεÄÃæ»ý£»
£¨3£©ÈçºÎÆ½ÒÆ¡÷ABC£¬Ê¹µÃÆ½ÒÆºóµÄ¡÷ABCÓë¡÷A2B2C2Æ´³ÉÒ»¸öƽÐÐËıßÐΣ¿Çë˵³öÒ»ÖÖÆ½ÒÆ·½·¨£®

·ÖÎö £¨1£©ÀûÓÃµãÆ½ÒÆµÄ×ø±ê¹æÂÉд³öA¡¢B¡¢CµÄ¶ÔÓ¦µãA1¡¢B1¡¢C1µÄ×ø±ê£¬È»ºóÃèµã¼´¿É£»
£¨2£©ÀûÓÃÍø¸ñÌØµãºÍÐýתµÄÐÔÖʷֱ𻭳öµãA1¡¢B1¡¢C1µÄ¶ÔÓ¦µãA2¡¢B2¡¢C2£¬´Ó¶øµÃµ½¡÷A2B2C2£¬È»ºóÀûÓÃÁâÐεÄÃæ»ý¹«Ê½¼ÆËãËıßÐεÄÃæ»ý£»
£¨3£©·½·¨ºÜ¶à£¬Èç¿ÉÒÔ½«¡÷ABCÏÈÏò×óÆ½ÒÆ4¸öµ¥Î»£¬ÔÙÏòÉÏÆ½ÒÆ4¸öµ¥Î»£¬Æ½ÒƺóµÄ¡÷ABCÓë¡÷A2B2C2Æ´³ÉÒ»¸öƽÐÐËıßÐλò½«¡÷ABCÏÈÏò×óÆ½ÒÆ1¸öµ¥Î»£¬ÔÙÏòÉÏÆ½ÒÆ2¸öµ¥Î»£¬Æ½ÒƺóµÄ¡÷ABCÓë¡÷A2B2C2Æ´³ÉÒ»¸öƽÐÐËıßÐλò½«¡÷ABCÏÈÏò×óÆ½ÒÆ5¸öµ¥Î»£¬ÔÙÏòÉÏÆ½ÒÆ2¸öµ¥Î»£¬Æ½ÒƺóµÄ¡÷ABCÓë¡÷A2B2C2Æ´³ÉÒ»¸öƽÐÐËıßÐΣ®

½â´ð ½â£º£¨1£©Èçͼ£¬¡÷A1B1C1ΪËù×÷£¬A1£¨-1£¬3£©£»
£¨2£©Èçͼ£¬¡÷A2B2C2ΪËù×÷£»

ËıßÐÎA1C2A2C1ΪÁâÐΣ¬ËüµÄÃæ»ý=$\frac{1}{2}$¡Á6¡Á4=12£»
£¨3£©¿ÉÒÔ½«¡÷ABCÏÈÏò×óÆ½ÒÆ4¸öµ¥Î»£¬ÔÙÏòÉÏÆ½ÒÆ4¸öµ¥Î»£¬Æ½ÒƺóµÄ¡÷ABCÓë¡÷A2B2C2Æ´³ÉÒ»¸öƽÐÐËıßÐΣ®

µãÆÀ ±¾Ì⿼²éÁË×÷ͼ-Ðýת±ä»»£º¸ù¾ÝÐýתµÄÐÔÖÊ¿ÉÖª£¬¶ÔÓ¦½Ç¶¼ÏàµÈ¶¼µÈÓÚÐýת½Ç£¬¶ÔÓ¦Ïß¶ÎÒ²ÏàµÈ£¬ÓÉ´Ë¿ÉÒÔͨ¹ý×÷ÏàµÈµÄ½Ç£¬ÔڽǵıßÉϽØÈ¡ÏàµÈµÄÏ߶εķ½·¨£¬ÕÒµ½¶ÔÓ¦µã£¬Ë³´ÎÁ¬½ÓµÃ³öÐýתºóµÄͼÐΣ®Ò²¿¼²éÁËÆ½ÒƱ任£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ò»¸öÕýÊýxµÄƽ·½¸ùÊÇ3a-4ºÍ1-6a£¬ÇóxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®±È½Ï´óС£º-$\sqrt{2}$£¼-1£¨Ìî¡°£¾¡±¡¢¡°=¡±»ò¡°£¼¡±£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÒÑÖª¶þ´Îº¯Êýy1=$\frac{1}{2}$x2+bx+cµÄͼÏóÓëxÖá½»ÓÚB£¨-2£¬0£©¡¢CÁ½µã£¬ÓëyÖá½»ÓÚµãA£¨0£¬-6£©£¬Ö±ÏßACµÄº¯Êý½âÎöʽΪy2=mx+n
£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ¼°¶¥µã×ø±ê£»
£¨2£©¹ýÏß¶ÎOCÉÏÈÎÒâÒ»µã£¨²»º¬¶Ëµã£©×÷yÖáµÄƽÐÐÏߣ¬½»ACÓÚµãEÓë¶þ´Îº¯ÊýͼÏó½»ÓÚµãF£¬ÇóÏß¶ÎEFµÄ×î´óÖµ£»
£¨3£©ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚÒ»µãP£¬¡÷ACPÊÇÒÔACΪµ×±ßµÄµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®²»µÈʽ×é$\left\{\begin{array}{l}{x-2£¼0}\\{2x+6£¾0}\end{array}\right.$µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®-2£¼x£¼3B£®-3£¼x£¼2C£®x£¼2D£®x£¾-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èô·½³Ìx2-2x-1=0 µÄÁ½¸ù·Ö±ðΪx1£¬x2£¬Ôò3x1+3x2-4x1x2µÄֵΪ10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¹À¼Æ$\sqrt{7}-2$µÄÖµÔÚ£¨¡¡¡¡£©
A£®0µ½1Ö®¼äB£®1µ½2Ö®¼äC£®2µ½3Ö®¼äD£®3ÖÁ4Ö®¼ä

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬OÎª×ø±êÔ­µã£¬µãAµÄ×ø±êΪ£¨a£¬-a£©£¬µãB×ø±êΪ£¨b£¬c£©£¬a¡¢b¡¢cÂú×ã$\left\{\begin{array}{l}{3a+2b+c=8}\\{a-b+2c=-4}\end{array}\right.$£®
£¨1£©ÈôaûÓÐÆ½·½¸ù£¬ÅжϵãAÔÚµÚ¼¸ÏóÏÞ²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÈôµãAµ½yÖáµÄ¾àÀëÊǵãBµ½yÖá¾àÀëµÄ3±¶£¬ÇóµãBµÄ×ø±ê£»
£¨3£©µãDµÄ×ø±êΪ£¨2£¬-4£©£¬¡÷OABµÄÃæ»ýÊÇ¡÷DABÃæ»ýµÄ2±¶£¬ÇóµãBµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®»¯¼ò£º
£¨1£©$\frac{1}{x-3}-\frac{6}{{x}^{2}-9}$
£¨2£©$\frac{{x}^{2}-x}{{x}^{2}+2x+1}¡Â\frac{x-1}{x+1}$
£¨3£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨$\frac{1}{{a}^{2}-2a}-\frac{1}{{a}^{2}-4a+4}$£©$¡Â\frac{2}{{a}^{2}-2a}$£¬ÆäÖÐa=5£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸