分析 根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化即可找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2015=503×4+3即可找出点A2015的坐标.
解答 解:当x=1时,y=2,
∴点A1的坐标为(1,2);
当y=-x=2时,x=-2,
∴点A2的坐标为(-2,2);
同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,
∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),
A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).
∵2015=503×4+3,
∴点A2015的坐标为(-2503×2+1,-2503×2+2),即(-21007,-21008).
故答案为:(-21007,-21008).
点评 本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及规律型中点的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x(x+8)=9 | B. | x(8-x)=9 | C. | x(16-x)=9 | D. | x(16-2x)=9 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com