【题目】如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动.设动点运动时间为t秒.
(1)求AD的长;
(2)当△PDC的面积为15平方厘米时,求t的值;
(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得S△PMD= S△ABC?若存在,请求出t的值;若不存在,请说明理由.
【答案】
(1)解:∵AB=AC=13,AD⊥BC,
∴BD=CD=5cm,且∠ADB=90°,
∴AD2=AC2﹣CD2
∴AD=12cm
(2)解:AP=t,PD=12﹣t,
又∵由△PDM面积为 PD×DC=15,
解得PD=6,∴t=6
(3)解:假设存在t,
使得S△PMD= S△ABC.
① 若点M在线段CD上,
即 时,PD=12﹣t,DM=5﹣2t,
由S△PMD= S△ABC,
即 ,
2t2﹣29t+50=0
解得t1=12.5(舍去),t2=2.
②若点M在射线DB上,即 .
由S△PMD= S△ABC
得 ,
2t2﹣29t+70=0
解得 , .
综上,存在t的值为2或 或 ,使得S△PMD= S△ABC
【解析】①根据等腰三角形性质和勾股定理解答即可;②根据直角三角形面积求出PD×DC× =15即可求出t;③根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.
科目:初中数学 来源: 题型:
【题目】有如图所示的甲、乙、丙长方形卡片若干张,用它们可以拼一些新的长方形.求长为(a+2b),宽为(2a+b)的长方形面积;若要拼这样一个长方形,则需要甲、乙、丙长方形卡片分别多少张?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为( )
A.(﹣2,﹣1)
B.(﹣1,0)
C.(﹣1,﹣1)
D.(﹣2,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是( )
A.y=(x+2)2+3
B.y=(x+2)2﹣3
C.y=(x﹣2)2+3
D.y=(x﹣2)2﹣3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com