精英家教网 > 初中数学 > 题目详情
已知:△ABC是等腰直角三角形,∠C是直角,直线NM过点C,BP⊥MN于P,AQ⊥MN于Q,BP=3,AQ=4,求PQ的长.
分析:首先根据题目的已知条件可以证明△ACQ≌△CBP,然后利用全等三角形的性质可以得到BP=CQ,AQ=CP然后结合图形即可求出PQ的长.
解答:解:有两种情况:
①当直线MN与△ABC相交,
∵△ABC是等腰直角三角形,∠C是直角,
∴AC=BC,
又BP⊥MN于P,AQ⊥MN于Q,
∴∠ACQ+∠BCP=∠BCP+∠CBP=90°,∠AQC=∠CPB=90°
∴∠ACQ=∠CBP,
∴△ACQ≌△CBP,
∴BP=CQ,AQ=CP,
∴PQ=PC-CQ,
而BP=3,AQ=4,
∴PQ=1;
②当直线MN与△ABC不相交,如右图,根据①得到
△ACQ≌△CBP,
∴BP=CQ,AQ=CP,
∴PQ=PC+CQ,
而BP=3,AQ=4,
∴PQ=7.
点评:此题主要考查了等腰直角三角形的性质及全等三角形的性质与判定,首先利用等腰直角三角形的性质得到全等条件,然后利用全等三角形的性质即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图P是△ABC所在平面上一点.如果∠APB=∠BPC=∠CPA=120°,则点P就叫做费马点.
精英家教网
(1)当△ABC是等边三角形时,作尺规法作出△ABC费马点.(不要求写出作法,只要保留作图痕迹)
精英家教网
(2)已知:△ABC是等腰直角三角形,∠C=90°,AC=BC=
6
.四边形CDPE是正方形,CD在AC上,CE在BC上,P是△ABC的费马点.求:P点到AB的距离.
精英家教网
(3)已知:锐角△ABC,分别以AB,AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.
①求∠CPD的度数;
②求证:P点为△ABC的费马点.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,△ABC是等腰直角三角形,∠BAC=90°,BC=2,D是线段BC上一点,以AD为边,在AD的右侧作正方形ADEF.直线AE与直线BC交于点G,连接CF.
(1)如图1,当BD<1时,求证:△ACF≌△ABD;
(2)如图2,当BD>1时,请在图中作出相应的图形,猜测线段CF与线段BD的关系,并说明理由;
(3)连接GF,判断当线段BD为何值时,△GFC是等腰三角形.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,△ABC是等腰直角三角形,∠BAC=90°,BC=2,D是线段BC上一点,以AD为边,在AD的右侧作正方形ADEF.直线AE与直线BC交于点G,连接CF.

(1)如图1,当BD<1时,求证:△ACF≌△ABD;

(2)如图2,当BD>1时,请在图中作出相应的图形,猜测线段CF与线段BD的关系,并说明理由;

(3)连接GF,判断当线段BD为何值时,△GFC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源:2010年福建省宁德市福鼎市初中学业质量检查数学试卷(解析版) 题型:解答题

已知,△ABC是等腰直角三角形,∠BAC=90°,BC=2,D是线段BC上一点,以AD为边,在AD的右侧作正方形ADEF.直线AE与直线BC交于点G,连接CF.
(1)如图1,当BD<1时,求证:△ACF≌△ABD;
(2)如图2,当BD>1时,请在图中作出相应的图形,猜测线段CF与线段BD的关系,并说明理由;
(3)连接GF,判断当线段BD为何值时,△GFC是等腰三角形.

查看答案和解析>>

同步练习册答案