精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,E是正方形ABCD的对角线BD上的点,连接AE、CE.

(1)求证:AE=CE;
(2)若将△ABE沿AB对折后得到△ABF;当点E在BD的何处时,四边形AFBE是正方形?请证明你的结论.

【答案】
(1)证明:∵四边形ABCD是正方形,

∴AB=CB,∠BAD=∠ABC=90°,∠ABE=∠CBE=45°,

在△ABE和△CBE中,

∴△ABE≌△CBE(SAS),

∴AE=CE


(2)解:点E在BD的中点时,四边形AFBE是正方形;理由如下:

由折叠的性质得:∠F=∠AEB,AF=AE,BF=BE,

∵∠BAD=90°,E是BD的中点,

∴AE= BD=BE=DE,

∵AE=CE,

∴AE=BE=CE=DE=AF=BF,

∴四边形AFBE是菱形,E是正方形ABCD对角线的交点,

∴AE⊥BD,

∴∠AEB=90°,

∴四边形AFBE是正方形


【解析】(1)利用正方形的性质和SAS证明△ABE≌△CBE即可;(2)由折叠的性质得出∠F=∠AEB,AF=AE,BF=BE,由直角三角形斜边上的中线性质得出AE= BD=BE=DE,证出AE=BE=CE=DE=AF=BF,得出四边形AFBE是菱形,AE⊥BD,即可得出结论.
【考点精析】通过灵活运用翻折变换(折叠问题),掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解方程
(1)解方程:
(2)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+4的图象经过A(﹣3,0),B(5,4),与y轴交于点C.

(1)求抛物线的解析式;
(2)线段AB在第一象限内的部分上有一动点P,过点P作y轴的平行线,交抛物线于点Q,是否存在点P使四边形BPCQ的面积最大?如果存在,请求出点P的坐标及面积的最大值;如果不存在,说明理由;
(3)x轴正半轴上有一点D(1,0),线段AC上是否存在点M,使△AOM∽△ADC?如果存在,直接写出点M的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.

(1)求证:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+ 与直线AB交于点A(﹣1,0),B(4, ),点D是抛物线A、B两点间部分上的一个动点(不与点A、B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.

(1)求抛物线的表达式;
(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于(

A.
B.
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形ABCD,等腰直角三角板的直角顶点落在正方形的顶点D处,使三角板绕点D旋转.
(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;

(2)在(1)的条件下,若DE:AE:CE=1: :3,求∠AED的度数;
(3)若BC=4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的一边DF与边DM重合时(如图2),若OF= ,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】折叠矩形ABCD,使点D落在BC边上的点F处,若折痕AE=5 ,tan∠EFC= ,则BC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:两条抛物线顶点都在直线y=x上,且两条抛物线关于原点成中心对称,则称这两条抛物线为一对“友好抛物线”.

(1)抛物线y=2(x-1)2+1如图1所示,请画出它的“友好抛物线”,并直接写出它的解析式;
(确认无误后,请用黑色水笔描黑)
(2)一对“友好抛物线”,其中一条抛物线的解析式为y= -(x+h)2-h,这对“友好抛物线”与y轴交点记为A,B,记AB=n(当A与B重合时,记n=0),现我们来探究n与h的关系;
①当h≥0时,如图2所示,求n与h的函数关系式;
②当h<0时,求n与h的函数关系式;
(3)在(2)的条件下,要使 ≤n≤ ,试直接写出h的取值范围.

查看答案和解析>>

同步练习册答案