精英家教网 > 初中数学 > 题目详情
an=-
13
,b2n=2,(n为正整数),求1+(-ab)4n+a3nb6n的值.
分析:根据an=-
1
3
,b2n=2,(n为正整数)可得a4n=
1
81
,a3n=-
1
27
,b6n=8,b4n=4,然后再代入1+(-ab)4n+a3nb6n中进行计算即可.
解答:解:∵an=-
1
3
,b2n=2,(n为正整数),
∴a4n=
1
81
,a3n=-
1
27
,b6n=8,b4n=4,
∴1+(-ab)4n+a3nb6n
=1+
1
81
×4+(-
1
27
)×8
=
61
81
点评:此题主要考查了幂的乘方和积的乘方,关键是掌握幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

根据以下10个乘积,回答问题:
11×29;12×28;13×27;14×26;15×25;
16×24;17×23;18×22;19×21;20×20.
(1)试将以上各乘积分别写成一个“□2-∅2”(两数平方差)的形式,并写出其中一个的思考过程;
(2)将以上10个乘积按照从小到大的顺序排列起来;
(3)若用a1b1,a2b2,…,anbn表示n个乘积,其中a1,a2,a3,…,an,b1,b2,b3,…,bn为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

31、根据下列各式,回答问题:
①11×29=202-92
②12×28=202-82
③13×27=
202-72

④14×26=202-62
⑤15×25=202-52
⑥16×24=202-42
⑦17×23=
202-32

⑧18×22=202-22
⑨19×21=202-12
⑩20×20=202-02
(1)请把③⑦分别写成一个“□2-○2”(两数平方差)的形式,并将以上10个乘积按照从小到大的顺序排列起来;(直接用序号表示)
(2)若乘积的两个因数分别用字母a,b表示(a,b为正数),请观察直接写出ab与a+b的关系式;(不需要说明理由)
(3)若用a1b1,a2b2,…,anbn表示n个乘积,其中a1,a2,a3,…,an,b1,b2,b3,…,bn为正数.请根据(1)中乘积的大小顺序猜测出一个一般结论.(不需要说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北京)如图,在平面直角坐标系xOy中,已知直线l:y=-x-1,双曲线y=
1
x
,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,An,…记点An的横坐标为an,若a1=2,则a2=
-
3
2
-
3
2
,a2013=
-
1
3
-
1
3
;若要将上述操作无限次地进行下去,则a1不可能取的值是
0、-1
0、-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

根据下列各式,回答问题:
①11×29=202-92
②12×28=202-82
③13×27=______
④14×26=202-62
⑤15×25=202-52
⑥16×24=202-42
⑦17×23=______
⑧18×22=202-22
⑨19×21=202-12
⑩20×20=202-02
(1)请把③⑦分别写成一个“□2-○2”(两数平方差)的形式,并将以上10个乘积按照从小到大的顺序排列起来;(直接用序号表示)
(2)若乘积的两个因数分别用字母a,b表示(a,b为正数),请观察直接写出ab与a+b的关系式;(不需要说明理由)
(3)若用a1b1,a2b2,…,anbn表示n个乘积,其中a1,a2,a3,…,an,b1,b2,b3,…,bn为正数.请根据(1)中乘积的大小顺序猜测出一个一般结论.(不需要说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(阅读材料)如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示.比如,数列a1,a2,a3,a4,a5,a6,…,an(an表示第n项),若有a2-a1=a3-a2=a4-a3=…an-an-1=d,d是个常数,则就可以说这个数列是等差数列,其中的和记为sn.由等差数列的定义可得a2=a1+d,a3=a2+d=a1+2d,a4=a3+d=a1+3d,…,an=a1+(n-1)d,所以sn=a1+a2+a3+a4+…+an=a1+a1+d+a1+2d+a1+3d+…+a1+(n-1)d=na1+[d+2d+3d+…+(n-1)d]=na1+数学公式,求:
(1)利用数学公式计算:3,5,7,9,11,13,…103这几个数的和.
(2)若数列a1,a2,a3,a4,a5,a6,…,an为等差数列,公差为d,记b1=a1+a2,b2=a3+a4,b3=a5+a6,b4=a7+a8,…b7=a13+a14,请问b1,b2,b3,b4,b5,b6,b7是等差数列吗?若是,请写出理由,并求出公差.

查看答案和解析>>

同步练习册答案